1,175 research outputs found

    Trapping and detection of single atoms using a spherical mirror

    Full text link
    We fabricate a miniature spherical mirror for tightly focusing an optical dipole trap for neutral atoms. The mirror formation process is modelled to predict the dimensions for particular fabrication parameters. We integrate the spherical mirror with a neutral atom experiment to trap and detect a single atom with high efficiency. The mirror serves the dual purpose of focusing the dipole trap as well as collection of the atomic fluorescence into an optical fibre.Comment: 13 pages, 6 figure

    State detection using coherent Raman repumping and two-color Raman transfers

    Full text link
    We demonstrate state detection based on coherent Raman repumping and a two-color Raman state transfer. The Raman coupling during detection selectively eliminates unwanted dark states in the fluorescence cycle without compromising the immunity of the desired dark state to off-resonant scattering. We demonstrate this technique using 137Ba+^{137}\mathrm{Ba}^+ where a combination of Raman coupling and optical pumping leaves the D3/2D_{3/2} F"=3,mF"=3\ket{F"=3,m_F"=3} metastable state optically dark and immune to off-resonant scattering. All other states are strongly coupled to the upper P1/2P_{1/2} levels. We achieve a single shot state-detection efficiency of 89.6(3)89.6(3)% in a 1ms1\mathrm{ms} integration time, limited almost entirely by technical imperfections. Shelving to the F"=3,mF"=3\ket{F"=3,m_F"=3} state before detection is performed via a two-color Raman transfer with a fidelity of 1.00(3)1.00(3)

    Collective cavity quantum electrodynamics with multiple atomic levels

    Full text link
    We study the transmission spectra of ultracold rubidium atoms coupled to a high-finesse optical cavity. Under weak probing with pi-polarized light, the linear response of the system is that of a collective spin with multiple levels coupled to a single mode of the cavity. By varying the atom number, we change the collective coupling of the system. We observe the change in transmission spectra when going from a regime where the collective coupling is much smaller than the separation of the atomic levels to a regime where both are of comparable size. The observations are in good agreement with a reduced model we developed for our system.Comment: 4 pages, 4 figure

    Fabrication of Glass Micro-Cavities for Cavity QED Experiments

    Full text link
    We report a process for fabricating high quality, defect-free spherical mirror templates suitable for developing high finesse optical Fabry-Perot resonators. The process utilizes the controlled reflow of borosilicate glass and differential pressure to produce mirrors with 0.3 nanometer surface roughness. The dimensions of the mirrors are in the 0.5-5mm range making them suitable candidates for integration with on-chip neutral atom and ion experiments where enhanced interaction between atoms and photons are required. Moreover the mirror curvature, dimension and placement is readily controlled and the process can easily provide an array of such mirrors. We show that cavities constructed with these mirror templates are well suited to quantum information applications such as single photon sources and atom-photon entanglement.Comment: 3 page

    Action Learning Report 2019: A follow-up to the National Evaluation of The Royal British Legion’s Break Services

    Get PDF
    In August 2017, a research team at Liverpool John Moores University embarked upon a 12-month transformative evaluation of The Royal British Legion’s (hereafter ‘The Legion’) suite of Breaks Services. This document details the findings of an event-based follow-up project funded by Liverpool John Moores University. Focusing upon the implementation of the Theory of Change Model (TCM) created during this research, this project aimed to: Work with staff to recognise and maintain strengths of the Service. To continue processes of action learning beyond the Evaluation. To support Break Services staff in digesting the Evaluation. To share and explain best practice. To identify operational activities in response to the findings. To understand the experience of front-line TRBL Break Service staff and include their voice in management discussions. To understand the experience of transition for the service as the new strategy is crafted

    Smoothed Particle Hydrodynamics Simulations of Apsidal and Nodal Superhumps

    Get PDF
    In recent years a handful of systems have been observed to show "negative" (nodal) superhumps, with periods slightly shorter than the orbital period. It has been suggested that these modes are a consequence of the slow retrograde precession of the line of nodes in a disk tilted with respect to the orbital plane. Our simulations confirm and refine this model: they suggest a roughly axisymmetric, retrogradely-precessing, tilted disk that is driven at a period slightly less than half the orbital period as the tidal field of the orbiting secondary encounters in turn the two halves of the disk above and below the midplane. Each of these passings leads to viscous dissipation on one face of an optically-thick disk -- observers on opposite sides of the disk would each observe one brightening per orbit, but 180 degrees out of phase with each other.Comment: 11 pages. Accepted for publication in The ApJ Letter

    The Intrinsic Origin of Spin Echoes in Dipolar Solids Generated by Strong Pi Pulses

    Full text link
    In spectroscopy, it is conventional to treat pulses much stronger than the linewidth as delta-functions. In NMR, this assumption leads to the prediction that pi pulses do not refocus the dipolar coupling. However, NMR spin echo measurements in dipolar solids defy these conventional expectations when more than one pi pulse is used. Observed effects include a long tail in the CPMG echo train for short delays between pi pulses, an even-odd asymmetry in the echo amplitudes for long delays, an unusual fingerprint pattern for intermediate delays, and a strong sensitivity to pi-pulse phase. Experiments that set limits on possible extrinsic causes for the phenomena are reported. We find that the action of the system's internal Hamiltonian during any real pulse is sufficient to cause the effects. Exact numerical calculations, combined with average Hamiltonian theory, identify novel terms that are sensitive to parameters such as pulse phase, dipolar coupling, and system size. Visualization of the entire density matrix shows a unique flow of quantum coherence from non-observable to observable channels when applying repeated pi pulses.Comment: 24 pages, 27 figures. Revised from helpful referee comments. Added new Table IV, new paragraphs on pages 3 and 1
    corecore