4,495 research outputs found

    SPH simulations of irradiation-driven warped accretion discs and the long periods in X-ray binaries

    Full text link
    We present three dimensional smoothed particle hydrodynamics (SPH) calculations of irradiation-driven warping of accretion discs. Initially unwarped planar discs are unstable to the radiation reaction when the disc is illuminated by a central radiation source. The disc warps and tilts and precesses slowly in a retrograde direction; its shape continuously flexes in response to the changing orientation of the Roche potential. We simulate ten systems: eight X-ray binaries, one cataclysmic variable (CV), and a `generic' low mass X-ray binary (LMXB). We adopt system parameters from observations and tune a single parameter: our model X-ray luminosity (LL_{*}) to reproduce the observed or inferred super-orbital periods. Without exception, across a wide range of parameter space, we find an astonishingly good match between the observed LXL_{X} and the model LL_{*}. We conclude irradiation-driven warping is the mechanism underlying the long periods in X-ray binaries. Our Her X-1 simulation simultaneously reproduces the observed LXL_{X}, the "main-" and "short-high" X-ray states and the orbital inclination. Our simulations of SS 433 give a maximum warp angle of 18.618.6^{\circ}, a good match to the cone traced by the jets, but this angle is reached only in the outer disc. In all cases, the overall disc tilt is less than \degrees{13} and the maximum disc warp is less than and or equal to \degrees{21}.Comment: 17 pages, 14 figures, shorter abstract (24 lines limit

    Comprehensive simulations of superhumps

    Full text link
    (Abridged) We use 3D SPH calculations with higher resolution, as well as with more realistic viscosity and sound-speed prescriptions than previous work to examine the eccentric instability which underlies the superhump phenomenon in semi-detached binaries. We illustrate the importance of the two-armed spiral mode in the generation of superhumps. Differential motions in the fluid disc cause converging flows which lead to strong spiral shocks once each superhump cycle. The dissipation associated with these shocks powers the superhump. We compare 2D and 3D results, and conclude that 3D simulations are necessary to faithfully simulate the disc dynamics. We ran our simulations for unprecedented durations, so that an eccentric equilibrium is established except at high mass ratios where the growth rate of the instability is very low. Our improved simulations give a closer match to the observed relationship between superhump period excess and binary mass ratio than previous numerical work. The observed black hole X-ray transient superhumpers appear to have systematically lower disc precession rates than the cataclysmic variables. This could be due to higher disc temperatures and thicknesses. The modulation in total viscous dissipation on the superhump period is overwhelmingly from the region of the disc within the 3:1 resonance radius. As the eccentric instability develops, the viscous torques are enhanced, and the disc consequently adjusts to a new equilibrium state, as suggested in the thermal-tidal instability model. We quantify this enhancement in the viscosity, which is ~10 per cent for q=0.08. We characterise the eccentricity distributions in our accretion discs, and show that the entire body of the disc partakes in the eccentricity.Comment: 18 pages (mn2e LaTeX), 14 figures, 5 tables, Accepted for publication in MNRA

    Elementary Excitations of a Bose-Einstein Condensate in an Effective Magnetic Field

    Get PDF
    We calculate the low energy elementary excitations of a Bose-Einstein Condensate in an effective magnetic field. The field is created by the interplay between light beams carrying orbital angular momentum and the trapped atoms. We examine the role of the homogeneous magnetic field, familiar from studies of rotating condensates, and also investigate spectra for vector potentials with a more general radial dependence. We discuss the instabilities which arise and how these may be manifested.Comment: 8 pages, 4 figure

    Thermal gravity, black holes and cosmological entropy

    Full text link
    Taking seriously the interpretation of black hole entropy as the logarithm of the number of microstates, we argue that thermal gravitons may undergo a phase transition to a kind of black hole condensate. The phase transition proceeds via nucleation of black holes at a rate governed by a saddlepoint configuration whose free energy is of order the inverse temperature in Planck units. Whether the universe remains in a low entropy state as opposed to the high entropy black hole condensate depends sensitively on its thermal history. Our results may clarify an old observation of Penrose regarding the very low entropy state of the universe.Comment: 5 pages, 2 figures, RevTex. v4: to appear in Phys. Rev.

    The Discovery of a Spatially-Resolved Supernova Remnant in M31 with Chandra

    Get PDF
    Chandra observations of M31 allow the first spatially resolved X-ray image of a supernova remnant (SNR) in an external spiral galaxy. CXOM31 J004327.7+411829 is a slightly elongated ring-shaped object with a diameter of ~11'' (42 pc). In addition, the X-ray image hints that the chemical composition of the SNR is spatial dependent. The X-ray spectrum of the SNR can be well fitted with a Raymond-Smith model or a non-equilibrium ionization model. Depending on the spectral model, the 0.3-7 keV luminosity is between 3.2x10^36 erg/s and 4.5x10^37 erg/s. The age of the SNR is estimated to be 3210-22300 years and the number density of ambient gas is ~0.003-0.3 cm^-3. This suggests that the local interstellar medium around the SNR is low.Comment: 5 pages, 3 figures; accepted for publication in ApJ

    Abell 1201: a Minor merger at second core passage

    Full text link
    We present an analysis of the structures and dynamics of the merging cluster Abell~1201, which has two sloshing cold fronts around a cooling core, and an offset gas core approximately 500kpc northwest of the center. New Chandra and XMM-Newton data reveal a region of enhanced brightness east of the offset core, with breaks in surface brightness along its boundary to the north and east. This is interpreted as a tail of gas stripped from the offset core. Gas in the offset core and the tail is distinguished from other gas at the same distance from the cluster center chiefly by having higher density, hence lower entropy. In addition, the offset core shows marginally lower temperature and metallicity than the surrounding area. The metallicity in the cool core is high and there is an abrupt drop in metallicity across the southern cold front. We interpret the observed properties of the system, including the placement of the cold fronts, the offset core and its tail in terms of a simple merger scenario. The offset core is the remnant of a merging subcluster, which first passed pericenter southeast of the center of the primary cluster and is now close to its second pericenter passage, moving at ~1000 km/s. Sloshing excited by the merger gave rise to the two cold fronts and the disposition of the cold fronts reveals that we view the merger from close to the plane of the orbit of the offset core.Comment: accepted by Ap

    Three dimensional SPH simulations of radiation-driven warped accretion discs

    Full text link
    We present three dimensional smoothed particle hydrodynamics (SPH) calculations of warped accretion discs in X-ray binary systems. Geometrically thin, optically thick accretion discs are illuminated by a central radiation source. This illumination exerts a non-axisymmetric radiation pressure on the surface of the disc resulting in a torque that acts on the disc to induce a twist or warp. Initially planar discs are unstable to warping driven by the radiation torque and in general the warps also precess in a retrograde direction relative to the orbital flow. We simulate a number of X-ray binary systems which have different mass ratios using a number of different luminosities for each. Radiation-driven warping occurs for all systems simulated. For mass ratios q ~ 0.1 a moderate warp occurs in the inner disc while the outer disc remains in the orbital plane (c.f. X 1916-053). For less extreme mass ratios the entire disc tilts out of the orbital plane (c.f. Her X-1). For discs that are tilted out of the orbital plane in which the outer edge material of the disc is precessing in a prograde direction we obtain both positive and negative superhumps simultaneously in the dissipation light curve (c.f. V603 Aql).Comment: 12 pages, 12 figures, paper accepted for publication by MNRA
    corecore