4,495 research outputs found
SPH simulations of irradiation-driven warped accretion discs and the long periods in X-ray binaries
We present three dimensional smoothed particle hydrodynamics (SPH)
calculations of irradiation-driven warping of accretion discs. Initially
unwarped planar discs are unstable to the radiation reaction when the disc is
illuminated by a central radiation source. The disc warps and tilts and
precesses slowly in a retrograde direction; its shape continuously flexes in
response to the changing orientation of the Roche potential. We simulate ten
systems: eight X-ray binaries, one cataclysmic variable (CV), and a `generic'
low mass X-ray binary (LMXB). We adopt system parameters from observations and
tune a single parameter: our model X-ray luminosity () to reproduce the
observed or inferred super-orbital periods. Without exception, across a wide
range of parameter space, we find an astonishingly good match between the
observed and the model . We conclude irradiation-driven warping
is the mechanism underlying the long periods in X-ray binaries. Our Her X-1
simulation simultaneously reproduces the observed , the "main-" and
"short-high" X-ray states and the orbital inclination. Our simulations of SS
433 give a maximum warp angle of , a good match to the cone
traced by the jets, but this angle is reached only in the outer disc. In all
cases, the overall disc tilt is less than \degrees{13} and the maximum disc
warp is less than and or equal to \degrees{21}.Comment: 17 pages, 14 figures, shorter abstract (24 lines limit
Comprehensive simulations of superhumps
(Abridged) We use 3D SPH calculations with higher resolution, as well as with
more realistic viscosity and sound-speed prescriptions than previous work to
examine the eccentric instability which underlies the superhump phenomenon in
semi-detached binaries. We illustrate the importance of the two-armed spiral
mode in the generation of superhumps. Differential motions in the fluid disc
cause converging flows which lead to strong spiral shocks once each superhump
cycle. The dissipation associated with these shocks powers the superhump. We
compare 2D and 3D results, and conclude that 3D simulations are necessary to
faithfully simulate the disc dynamics. We ran our simulations for unprecedented
durations, so that an eccentric equilibrium is established except at high mass
ratios where the growth rate of the instability is very low. Our improved
simulations give a closer match to the observed relationship between superhump
period excess and binary mass ratio than previous numerical work. The observed
black hole X-ray transient superhumpers appear to have systematically lower
disc precession rates than the cataclysmic variables. This could be due to
higher disc temperatures and thicknesses. The modulation in total viscous
dissipation on the superhump period is overwhelmingly from the region of the
disc within the 3:1 resonance radius. As the eccentric instability develops,
the viscous torques are enhanced, and the disc consequently adjusts to a new
equilibrium state, as suggested in the thermal-tidal instability model. We
quantify this enhancement in the viscosity, which is ~10 per cent for q=0.08.
We characterise the eccentricity distributions in our accretion discs, and show
that the entire body of the disc partakes in the eccentricity.Comment: 18 pages (mn2e LaTeX), 14 figures, 5 tables, Accepted for publication
in MNRA
Elementary Excitations of a Bose-Einstein Condensate in an Effective Magnetic Field
We calculate the low energy elementary excitations of a Bose-Einstein
Condensate in an effective magnetic field. The field is created by the
interplay between light beams carrying orbital angular momentum and the trapped
atoms. We examine the role of the homogeneous magnetic field, familiar from
studies of rotating condensates, and also investigate spectra for vector
potentials with a more general radial dependence. We discuss the instabilities
which arise and how these may be manifested.Comment: 8 pages, 4 figure
Thermal gravity, black holes and cosmological entropy
Taking seriously the interpretation of black hole entropy as the logarithm of
the number of microstates, we argue that thermal gravitons may undergo a phase
transition to a kind of black hole condensate. The phase transition proceeds
via nucleation of black holes at a rate governed by a saddlepoint configuration
whose free energy is of order the inverse temperature in Planck units. Whether
the universe remains in a low entropy state as opposed to the high entropy
black hole condensate depends sensitively on its thermal history. Our results
may clarify an old observation of Penrose regarding the very low entropy state
of the universe.Comment: 5 pages, 2 figures, RevTex. v4: to appear in Phys. Rev.
The Discovery of a Spatially-Resolved Supernova Remnant in M31 with Chandra
Chandra observations of M31 allow the first spatially resolved X-ray image of
a supernova remnant (SNR) in an external spiral galaxy. CXOM31 J004327.7+411829
is a slightly elongated ring-shaped object with a diameter of ~11'' (42 pc). In
addition, the X-ray image hints that the chemical composition of the SNR is
spatial dependent. The X-ray spectrum of the SNR can be well fitted with a
Raymond-Smith model or a non-equilibrium ionization model. Depending on the
spectral model, the 0.3-7 keV luminosity is between 3.2x10^36 erg/s and
4.5x10^37 erg/s. The age of the SNR is estimated to be 3210-22300 years and the
number density of ambient gas is ~0.003-0.3 cm^-3. This suggests that the local
interstellar medium around the SNR is low.Comment: 5 pages, 3 figures; accepted for publication in ApJ
Abell 1201: a Minor merger at second core passage
We present an analysis of the structures and dynamics of the merging cluster
Abell~1201, which has two sloshing cold fronts around a cooling core, and an
offset gas core approximately 500kpc northwest of the center. New Chandra and
XMM-Newton data reveal a region of enhanced brightness east of the offset core,
with breaks in surface brightness along its boundary to the north and east.
This is interpreted as a tail of gas stripped from the offset core. Gas in the
offset core and the tail is distinguished from other gas at the same distance
from the cluster center chiefly by having higher density, hence lower entropy.
In addition, the offset core shows marginally lower temperature and metallicity
than the surrounding area. The metallicity in the cool core is high and there
is an abrupt drop in metallicity across the southern cold front. We interpret
the observed properties of the system, including the placement of the cold
fronts, the offset core and its tail in terms of a simple merger scenario. The
offset core is the remnant of a merging subcluster, which first passed
pericenter southeast of the center of the primary cluster and is now close to
its second pericenter passage, moving at ~1000 km/s. Sloshing excited by the
merger gave rise to the two cold fronts and the disposition of the cold fronts
reveals that we view the merger from close to the plane of the orbit of the
offset core.Comment: accepted by Ap
Three dimensional SPH simulations of radiation-driven warped accretion discs
We present three dimensional smoothed particle hydrodynamics (SPH)
calculations of warped accretion discs in X-ray binary systems. Geometrically
thin, optically thick accretion discs are illuminated by a central radiation
source. This illumination exerts a non-axisymmetric radiation pressure on the
surface of the disc resulting in a torque that acts on the disc to induce a
twist or warp. Initially planar discs are unstable to warping driven by the
radiation torque and in general the warps also precess in a retrograde
direction relative to the orbital flow. We simulate a number of X-ray binary
systems which have different mass ratios using a number of different
luminosities for each. Radiation-driven warping occurs for all systems
simulated. For mass ratios q ~ 0.1 a moderate warp occurs in the inner disc
while the outer disc remains in the orbital plane (c.f. X 1916-053). For less
extreme mass ratios the entire disc tilts out of the orbital plane (c.f. Her
X-1). For discs that are tilted out of the orbital plane in which the outer
edge material of the disc is precessing in a prograde direction we obtain both
positive and negative superhumps simultaneously in the dissipation light curve
(c.f. V603 Aql).Comment: 12 pages, 12 figures, paper accepted for publication by MNRA
- …