14 research outputs found

    Altered subcortical emotional salience processing differentiates Parkinson’s patients with and without psychotic symptoms

    Get PDF
    Objective Current research does not provide a clear explanation for why some patients with Parkinson’s Disease (PD) develop psychotic symptoms. The ‘aberrant salience hypothesis’ of psychosis has been influential and proposes that dopaminergic dysregulation leads to inappropriate attribution of salience to irrelevant/non-informative stimuli, facilitating the formation of hallucinations and delusions. The aim of this study is to investigate whether non-motivational salience is altered in PD patients and possibly linked to the development of psychotic symptoms. Methods We investigated salience processing in 14 PD patients with psychotic symptoms, 23 PD patients without psychotic symptoms and 19 healthy controls. All patients were on dopaminergic medication for their PD. We examined emotional salience using a visual oddball fMRI paradigm that has been used to investigate early stages of schizophrenia spectrum psychosis, controlling for resting cerebral blood flow as assessed with arterial spin labelling fMRI. Results We found significant differences between patient groups in brain responses to emotional salience. PD patients with psychotic symptoms had enhanced brain responses in the striatum, dopaminergic midbrain, hippocampus and amygdala compared to patients without psychotic symptoms. PD patients with psychotic symptoms showed significant correlations between the levels of dopaminergic drugs they were taking and BOLD signalling, as well as psychotic symptom scores. Conclusion Our study suggests that enhanced signalling in the striatum, dopaminergic midbrain, the hippocampus and amygdala is associated with the development of psychotic symptoms in PD, in line with that proposed in the ‘aberrant salience hypothesis’ of psychosis in schizophrenia

    Cortical and striatal reward processing in Parkinson's disease psychosis

    Get PDF
    Psychotic symptoms frequently occur in Parkinson's disease (PD), but their pathophysiology is poorly understood. According to the National Institute of Health RDoc programme, the pathophysiological basis of neuropsychiatric symptoms may be better understood in terms of dysfunction of underlying domains of neurocognition in a trans-diagnostic fashion. Abnormal cortico-striatal reward processing has been proposed as a key domain contributing to the pathogenesis of psychotic symptoms in schizophrenia. This theory has received empirical support in the study of schizophrenia spectrum disorders and preclinical models of psychosis, but has not been tested in the psychosis associated with PD. We, therefore, investigated brain responses associated with reward expectation and prediction error signaling during reinforcement learning in PD-associated psychosis. An instrumental learning task with monetary gains and losses was conducted during an fMRI study in PD patients with (n = 12), or without (n = 17), a history of psychotic symptoms, along with a sample of healthy controls (n = 24). We conducted region of interest analyses in the ventral striatum (VS), ventromedial prefrontal and posterior cingulate cortices, and whole-brain analyses. There was reduced activation in PD patients with a history of psychosis, compared to those without, in the posterior cingulate cortex and the VS during reward anticipation (p < 0.05 small volume corrected). The results suggest that cortical and striatal abnormalities in reward processing, a putative pathophysiological mechanism of psychosis in schizophrenia, may also contribute to the pathogenesis of psychotic symptoms in PD. The finding of posterior cingulate dysfunction is in keeping with prior results highlighting cortical dysfunction in the pathogenesis of PD psychosis

    Hedonic and disgust taste perception in borderline personality disorder and depression

    No full text
    Depression and borderline personality disorder (BPD) are both thought to be accompanied by alterations in the subjective experience of environmental rewards. We evaluated responses to sweet, bitter and neutral tastes (juice, quinine and water) in 29 women with depression, 17 women with BPD and 27 female healthy controls (HC). BPD patients gave lower pleasantness and higher disgust ratings for quinine and juice compared to controls; depression patients did not differ significantly from controls. Juice disgust ratings were related to self-disgust in BPD, suggesting close links between abnormal sensory processing and self-identity in BPD

    Reduction in ventral striatal activity when anticipating a reward in depression and schizophrenia: a replicated cross-diagnostic finding

    No full text
    In the research domain framework (RDoC), dysfunctional reward expectation has been proposed to be a cross-diagnostic domain in psychiatry, which may contribute to symptoms common to various neuropsychiatric conditions, such as anhedonia or apathy/avolition. We used a modified version of the Monetary Incentive Delay (MID) paradigm to obtain functional MRI images from 22 patients with schizophrenia, 24 with depression and 21 controls. Anhedonia and other symptoms of depression, and overall positive and negative symptomatology were also measured. We hypothesized that the two clinical groups would have a reduced activity in the ventral striatum when anticipating reward (compared to anticipation of a neutral outcome) and that striatal activation would correlate with clinical measures of motivational problems and anhedonia. Results were consistent with the first hypothesis: two clusters in both the left and right ventral striatum were found to differ between the groups in reward anticipation. Post-hoc analysis showed that this was due to higher activation in the controls compared to the schizophrenia and the depression groups in the right ventral striatum, with activation differences between depression and controls also seen in the left ventral striatum. No differences were found between the two patient groups, and there were no areas of abnormal cortical activation in either group that survived correction for multiple comparisons. Reduced ventral striatal activity was related to greater anhedonia and overall depressive symptoms in the schizophrenia group, but not in the participants with depression. Findings are discussed in relation to previous literature but overall are supporting evidence of reward system dysfunction across the neuropsychiatric continuum, even if the specific clinical relevance is still not fully understood. We also discuss how the RDoC approach may help to solve some of the replication problems in psychiatric fMRI research

    Cortical and striatal reward processing in Parkinson's disease psychosis

    No full text
    Psychotic symptoms frequently occur in Parkinson's disease (PD), but their pathophysiology is poorly understood. According to the National Institute of Health RDoc programme, the pathophysiological basis of neuropsychiatric symptoms may be better understood in terms of dysfunction of underlying domains of neurocognition in a trans-diagnostic fashion. Abnormal cortico-striatal reward processing has been proposed as a key domain contributing to the pathogenesis of psychotic symptoms in schizophrenia. This theory has received empirical support in the study of schizophrenia spectrum disorders and preclinical models of psychosis, but has not been tested in the psychosis associated with PD. We, therefore, investigated brain responses associated with reward expectation and prediction error signaling during reinforcement learning in PD-associated psychosis. An instrumental learning task with monetary gains and losses was conducted during an fMRI study in PD patients with (n = 12), or without (n = 17), a history of psychotic symptoms, along with a sample of healthy controls (n = 24). We conducted region of interest analyses in the ventral striatum (VS), ventromedial prefrontal and posterior cingulate cortices, and whole-brain analyses. There was reduced activation in PD patients with a history of psychosis, compared to those without, in the posterior cingulate cortex and the VS during reward anticipation (p < 0.05 small volume corrected). The results suggest that cortical and striatal abnormalities in reward processing, a putative pathophysiological mechanism of psychosis in schizophrenia, may also contribute to the pathogenesis of psychotic symptoms in PD. The finding of posterior cingulate dysfunction is in keeping with prior results highlighting cortical dysfunction in the pathogenesis of PD psychosis

    Abnormal frontostriatal activity during unexpected reward receipt in depression and schizophrenia: relationship to anhedonia

    No full text
    Alterations in reward processes may underlie motivational and anhedonic symptoms in depression and schizophrenia. However it remains unclear whether these alterations are disorder-specific or shared, and whether they clearly relate to symptom generation or not. We studied brain responses to unexpected rewards during a simulated slot-machine game in 24 patients with depression, 21 patients with schizophrenia, and 21 healthy controls using functional magnetic resonance imaging. We investigated relationships between brain activation, task-related motivation, and questionnaire rated anhedonia. There was reduced activation in the orbitofrontal cortex, ventral striatum, inferior temporal gyrus, and occipital cortex in both depression and schizophrenia in comparison with healthy participants during receipt of unexpected reward. In the medial prefrontal cortex both patient groups showed reduced activation, with activation significantly more abnormal in schizophrenia than depression. Anterior cingulate and medial frontal cortical activation predicted task-related motivation, which in turn predicted anhedonia severity in schizophrenia. Our findings provide evidence for overlapping hypofunction in ventral striatal and orbitofrontal regions in depression and schizophrenia during unexpected reward receipt, and for a relationship between unexpected reward processing in the medial prefrontal cortex and the generation of motivational states

    Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes

    No full text
    Biotic and abiotic stresses cause significant yield losses in legumes and can significantly affect their productivity. Biotechnology tools such as marker-assisted breeding, tissue culture, in vitro mutagenesis and genetic transformation can contribute to solve or reduce some of these constraints. However, only limited success has been achieved so far. The emergence of “omic” technologies and the establishment of model legume plants such as Medicago truncatula and Lotus japonicus are promising strategies for understanding the molecular genetic basis of stress resistance, which is an important bottleneck for molecular breeding. Understanding the mechanisms that regulate the expression of stress-related genes is a fundamental issue in plant biology and will be necessary for the genetic improvement of legumes. In this review, we describe the current status of biotechnology approaches in relation to biotic and abiotic stresses in legumes and how these useful tools could be used to improve resistance to important constraints affecting legume crops.E. Prats is funded by an European Marie Curie Reintegration Grant, N. Rispail by (FP5) Eufaba project. Our work in this area is supported by Spanish CICYT project AGL-2002-03248 and European Union project FP6-2002-FOOD-1-506223. K. Singh’s work in this area is supported in part by the Grains Research and Development Corporation (GRDC) and the Department of Education, Science and Training (DEST) in Australia.Peer reviewe
    corecore