337 research outputs found
Isotope shift calculations for atoms with one valence electron
This work presents a method for the ab initio calculation of isotope shift in
atoms and ions with one valence electron above closed shells. As a zero
approximation we use relativistic Hartree-Fock and then calculate correlation
corrections. The main motivation for developing the method comes from the need
to analyse whether different isotope abundances in early universe can
contribute to the observed anomalies in quasar absorption spectra. The current
best explanation for these anomalies is the assumption that the fine structure
constant, alpha, was smaller at early epoch. We test the isotope shift method
by comparing the calculated and experimental isotope shift for the alkali and
alkali-like atoms Na, MgII, K, CaII and BaII. The agreement is found to be
good. We then calculate the isotope shift for some astronomically relevant
transitions in SiII and SiIV, MgII, ZnII and GeII.Comment: 11 page
High-Velocity clouds in the galactic all sky survey. i. catalog
We present a catalog of high-velocity clouds (HVCs) from the Galactic All Sky Survey (GASS) of southern sky neutral hydrogen, which has 57 mK sensitivity and 1 km s-1 velocity resolution and was obtained with the Parkes Telescope. Our catalog has been derived from the stray-radiation-corrected second release of GASS. We describe the data and our method of identifying HVCs and analyze the overall properties of the GASS population. We catalog a total of 1693 HVCs at declinations <0°, including 1111 positive velocity HVCs and 582 negative velocity HVCs. Our catalog also includes 295 anomalous velocity clouds (AVCs). The cloud line-widths of our HVC population have a median FWHM of ∼19 km s-1, which is lower than that found in previous surveys. The completeness of our catalog is above 95% based on comparison with the HIPASS catalog of HVCs upon which we improve by an order of magnitude in spectral resolution. We find 758 new HVCs and AVCs with no HIPASS counterpart. The GASS catalog will shed unprecedented light on the distribution and kinematic structure of southern sky HVCs, as well as delve further into the cloud populations that make up the anomalous velocity gas of the Milky Wa
Diffusion of the erosion products of copper electrodes from electric arc channel
The diffusion of vapour derived from electrodes is investigated for low erosion rates. In the case of low temperatures, the problem is solved analytically for free-burning and wall-stabilized electric arcs. For a wider temperature range, the problem is solved by numerical simulation. The temperature profile for the free-burning electric arc was obtained using a Gaussian approximation of experimental results
Atomic calculations and search for variation of the fine structure constant in quasar absorption spectra
A brief review of the search for variation of the fine structure constant in
quasar absorption spectra is presented. Special consideration is given to the
role of atomic calculations in the analysis of the observed data. A range of
methods which allow to perform calculations for atoms or ions with different
electron structure and which cover practically all periodic table of elements
is discussed. Critical compilation of the results of the calculations as well
as a review of the most recent results of the analysis are presented.Comment: 9 pages, 2 figures. Based on the talk at the Symposium on Atomic
Physics: A Tribute to Walter Johnson, Notre Dame, 5 April 2008. Reference 26
is correcte
Thermodynamics and Kinetic Theory of Relativistic Gases in 2-D Cosmological Models
A kinetic theory of relativistic gases in a two-dimensional space is
developed in order to obtain the equilibrium distribution function and the
expressions for the fields of energy per particle, pressure, entropy per
particle and heat capacities in equilibrium. Furthermore, by using the method
of Chapman and Enskog for a kinetic model of the Boltzmann equation the
non-equilibrium energy-momentum tensor and the entropy production rate are
determined for a universe described by a two-dimensional Robertson-Walker
metric. The solutions of the gravitational field equations that consider the
non-equilibrium energy-momentum tensor - associated with the coefficient of
bulk viscosity - show that opposed to the four-dimensional case, the cosmic
scale factor attains a maximum value at a finite time decreasing to a "big
crunch" and that there exists a solution of the gravitational field equations
corresponding to a "false vacuum". The evolution of the fields of pressure,
energy density and entropy production rate with the time is also discussed.Comment: 23 pages, accepted in PR
Constraining fundamental constants of physics with quasar absorption line systems
We summarize the attempts by our group and others to derive constraints on
variations of fundamental constants over cosmic time using quasar absorption
lines. Most upper limits reside in the range 0.5-1.5x10-5 at the 3sigma level
over a redshift range of approximately 0.5-2.5 for the fine-structure constant,
alpha, the proton-to-electron mass ratio, mu, and a combination of the proton
gyromagnetic factor and the two previous constants, gp(alpha^2/mu)^nu, for only
one claimed variation of alpha. It is therefore very important to perform new
measurements to improve the sensitivity of the numerous methods to at least
<0.1x10-5 which should be possible in the next few years. Future
instrumentations on ELTs in the optical and/or ALMA, EVLA and SKA pathfinders
in the radio will undoutedly boost this field by allowing to reach much better
signal-to-noise ratios at higher spectral resolution and to perform
measurements on molecules in the ISM of high redshift galaxies.Comment: 11 pages, 3 figure
Irreversible Processes in Inflationary Cosmological Models
By using the thermodynamic theory of irreversible processes and Einstein
general relativity, a cosmological model is proposed where the early universe
is considered as a mixture of a scalar field with a matter field. The scalar
field refers to the inflaton while the matter field to the classical particles.
The irreversibility is related to a particle production process at the expense
of the gravitational energy and of the inflaton energy. The particle production
process is represented by a non-equilibrium pressure in the energy-momentum
tensor. The non-equilibrium pressure is proportional to the Hubble parameter
and its proportionality factor is identified with the coefficient of bulk
viscosity. The dynamic equations of the inflaton and the Einstein field
equations determine the time evolution of the cosmic scale factor, the Hubble
parameter, the acceleration and of the energy densities of the inflaton and
matter. Among other results it is shown that in some regimes the acceleration
is positive which simulates an inflation. Moreover, the acceleration decreases
and tends to zero in the instant of time where the energy density of matter
attains its maximum value.Comment: 13 pages, 2 figures, to appear in PR
Nonlinear spinor field in Bianchi type-I Universe filled with viscous fluid: numerical solutions
We consider a system of nonlinear spinor and a Bianchi type I gravitational
fields in presence of viscous fluid. The nonlinear term in the spinor field
Lagrangian is chosen to be , with being a self-coupling
constant and being a function of the invariants an constructed from
bilinear spinor forms and . Self-consistent solutions to the spinor and
BI gravitational field equations are obtained in terms of , where
is the volume scale of BI universe. System of equations for and \ve,
where \ve is the energy of the viscous fluid, is deduced. This system is
solved numerically for some special cases.Comment: 15 pages, 4 figure
Cortical Structure and Cognition in Infants and Toddlers
Cortical structure has been consistently related to cognitive abilities in children and adults, yet we know little about how the cortex develops to support emergent cognition in infancy and toddlerhood when cortical thickness (CT) and surface area (SA) are maturing rapidly. In this report, we assessed how regional and global measures of CT and SA in a sample (N = 487) of healthy neonates, 1-year-olds, and 2-year-olds related to motor, language, visual reception, and general cognitive ability. We report novel findings that thicker cortices at ages 1 and 2 and larger SA at birth, age 1, and age 2 confer a cognitive advantage in infancy and toddlerhood. While several expected brain-cognition relationships were observed, overlapping cortical regions were also implicated across cognitive domains, suggesting that infancy marks a period of plasticity and refinement in cortical structure to support burgeoning motor, language, and cognitive abilities. CT may be a particularly important morphological indicator of ability, but its impact on cognition is relatively weak when compared with gestational age and maternal education. Findings suggest that prenatal and early postnatal cortical developments are important for cognition in infants and toddlers but should be considered in relation to other child and demographic factors
Curvature in causal BD-type inflationary cosmology
We study a closed model of the universe filled with viscous fluid and
quintessence matter components in a Brans-Dicke type cosmological model. The
dynamical equations imply that the universe may look like an accelerated flat
Friedmann-Robertson-Walker universe at low redshift. We consider here
dissipative processes which follow a causal thermodynamics. The theory is
applied to viscous fluid inflation, where accepted values for the total entropy
in the observable universe is obtained.Comment: 11 pages, revtex 4. For a festschrift honoring Alberto Garcia. To be
publishen in Gen. Rel. Gra
- …