575 research outputs found

    The Jus Ad Bellum and the 1998 Initiation of the Eritrean-Ethopian War

    Get PDF
    From May 1998 to December 2000, Eritrea and Ethiopia engaged in an armed conflict that cost the lives of thousands of individuals, injured thousands more, and displaced tens of thousands of men, women, and children from their homes. In December 2000, the two sides concluded a comprehensive agreement that ended the war. Among other things, the agreement established the Eritrea-Ethiopia Claims Commission. Consisting of five arbitrators, the Commission’s mandate was to “decide through binding arbitration all claims for loss, damage or injury by one Government against the other” that were “related to the conflict” and that “resulted from violations of international humanitarian law, including the 1949 Geneva Conventions, or other violations of international law.” The two countries filed claims with the Commission in December 2001 and from that time until August 2009, the Commission issued seventeen arbitral awards and eight decisions, covering a broad array of claims, including inhumane treatment of prisoners of war and civilian internees, abuse of enemy aliens in a belligerent’s territory or in occupied territory, wrongful seizure of the enemy’s public or private property, indiscriminate battlefield conduct or aerial bombing, harassment of diplomats and seizure of diplomatic property, and many other matters. The book LITIGATING WAR: ARBITRATION OF CIVIL INJURY BY THE ERITREA-ETHIOPIA CLAIMS COMMISSION seeks to integrate in discrete chapters the Commission’s findings on key topics, with each chapter organized into sub-sections that deal with the principal elements of that topic. The guiding emphasis is not on who-filed-what claim but is instead on what kinds of violations were addressed by the Commission, what kinds of evidence were relevant in establishing or defending against such violations, what legal conclusions emerged in addressing those violations, and what levels of compensation were deemed appropriate when a violation was found.The dominant area of international law upon which claims before the Eritrea-Ethiopia Claims Commission were based was the jus in bello, or the law operating as between two belligerents after an armed conflict has arisen. One type of claim filed before the Commission, however, was quite different, in that it concerned an alleged violation of the jus ad bellum, or the law on when a state may resort to a use of military force against another state. As one of the most important norms for the international legal system, the Commission’s treatment of the jus ad bellum claim is of particular interest, and is addressed in the book’s Chapter IV on “Initiation of War.

    Absorption Efficiencies of Forsterite. I: DDA Explorations in Grain Shape and Size

    Get PDF
    We compute the absorption efficiency (Qabs) of forsterite using the discrete dipole approximation (DDA) in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8-40 {\mu}m wavelength range. Using the DDSCAT code, we compute Qabs for non-spherical polyhedral grain shapes with a_eff = 0.1 {\mu}m. The shape characteristics identified are: 1) elongation/reduction along one of three crystallographic axes; 2) asymmetry, such that all three crystallographic axes are of different lengths; and 3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 {\mu}m, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1-1.0 {\mu}m) shifts the 10, 11 {\mu}m features systematically towards longer wavelengths and relative to the 11 {\mu}m feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8-40 {\mu}m spectra provides a potential means to probe the temperatures at which forsterite formed.Comment: 55 pages, 15 figure

    Evaluating Otter Reintroduction Outcomes Using Genetic Spatial Capture-Recapture Modified for Dendritic Networks

    Get PDF
    Monitoring the demographics and genetics of reintroduced populations is critical to evaluating reintroduction success, but species ecology and the landscapes that they inhabit often present challenges for accurate assessments. If suitable habitats are restricted to hierarchical dendritic networks, such as river systems, animal movements are typically constrained and may violate assumptions of methods commonly used to estimate demographic parameters. Using genetic detection data collected via fecal sampling at latrines, we demonstrate applicability of the spatial capture–recapture (SCR) network distance function for estimating the size and density of a recently reintroduced North American river otter (Lontra canadensis) population in the Upper Rio Grande River dendritic network in the southwestern United States, and we also evaluated the genetic outcomes of using a small founder group (n = 33 otters) for reintroduction. Estimated population density was 0.23–0.28 otter/km, or 1 otter/3.57–4.35 km, with weak evidence of density increasing with northerly latitude (β = 0.33). Estimated population size was 83–104 total otters in 359 km of riverine dendritic network, which corresponded to average annual exponential population growth of 1.12–1.15/year since reintroduction. Growth was ≥40% lower than most reintroduced river otter populations and strong evidence of a founder effect existed 8–10 years post-reintroduction, including 13–21% genetic diversity loss, 84%–87% genetic effective population size decline, and rapid divergence from the source population (FST accumulation = 0.06/generation). Consequently, genetic restoration via translocation of additional otters from other populations may be necessary to mitigate deleterious genetic effects in this small, isolated population. Combined with non-invasive genetic sampling, the SCR network distance approach is likely widely applicable to demogenetic assessments of both reintroduced and established populations of multiple mustelid species that inhabit aquatic dendritic networks, many of which are regionally or globally imperiled and may warrant reintroduction or augmentation efforts

    Growth Manipulation of Slicer Carrots by Foliar-applied Gibberellic Acid in New York

    Get PDF
    New York, USA, is a regional hub for processing carrot (Daucus carota ssp. sativus) production and Nantes-type cultivars are preferred for slicing. Diameter is critical in carrots for slicing, with roots larger than 1 5/8 inch being rejected. The potential to manipulate carrot root diameter and hence suitability for slicing by foliar-applied gibberellic acid (GA3) was tested in four small plot replicated field trials over 3 years (2020, 2021, and 2022). In the most efficacious treatments, GA3 resulted in a 23.1% to 135.4% increase in foliar biomass at the expense of root weight and diameter. Increases in foliar biomass are beneficial to facilitate top-pulling harvest. Reductions in root diameter from GA3 ranged from 9.5% to 19.6%, and in 2020 and 2022, increased the proportion of roots suitable for slicing. GA3 did not significantly affect root length and number. In two 2021 trials, GA3 increased color intensity quantified by a colorimeter, but this change was not noticeable to the naked eye. The optimal number of GA3 applications was seasonally dependent, ranging from a single application at 107 to 108 days after planting (DAP) in 2021, to two applications at 74 + 92 DAP in 2022. Three GA3 applications per season or late applications (up to 14 days prior to harvest) were not beneficial

    Physiological roles of pyruvate ferredoxin oxidoreductase and pyruvate formate-lyase in Thermoanaerobacterium saccharolyticum JW/SL-YS485

    Get PDF
    Background: Thermoanaerobacter saccharolyticum is a thermophilic microorganism that has been engineered to produce ethanol at high titer (30–70 g/L) and greater than 90 % theoretical yield. However, few genes involved in pyruvate to ethanol production pathway have been unambiguously identified. In T. saccharolyticum, the products of six putative pfor gene clusters and one pfl gene may be responsible for the conversion of pyruvate to acetyl-CoA. To gain insights into the physiological roles of PFOR and PFL, we studied the effect of deletions of several genes thought to encode these activities. Results: It was found that pyruvate ferredoxin oxidoreductase enzyme (PFOR) is encoded by the pforA gene and plays a key role in pyruvate dissimilation. We further demonstrated that pyruvate formate-lyase activity (PFL) is encoded by the pfl gene. Although the pfl gene is normally expressed at low levels, it is crucial for biosynthesis in T. saccharolyticum. In pforA deletion strains, pfl expression increased and was able to partially compensate for the loss of PFOR activity. Deletion of both pforA and pfl resulted in a strain that required acetate and formate for growth and produced lactate as the primary fermentation product, achieving 88 % theoretical lactate yield. Conclusion: PFOR encoded by Tsac_0046 and PFL encoded by Tsac_0628 are only two routes for converting pyruvate to acetyl-CoA in T. saccharolyticum. The physiological role of PFOR is pyruvate dissimilation, whereas that of PFL is supplying C1 units for biosynthesis
    • …
    corecore