2,452 research outputs found

    The influence of solar wind variability on magnetospheric ULF wave power

    Get PDF
    Magnetospheric ultra-low frequency (ULF) oscillations in the Pc 4–5 frequency range play an important role in the dynamics of Earth's radiation belts, both by enhancing the radial diffusion through incoherent interactions and through the coherent drift-resonant interactions with trapped radiation belt electrons. The statistical distributions of magnetospheric ULF wave power are known to be strongly dependent on solar wind parameters such as solar wind speed and interplanetary magnetic field (IMF) orientation. Statistical characterisation of ULF wave power in the magnetosphere traditionally relies on average solar wind–IMF conditions over a specific time period. In this brief report, we perform an alternative characterisation of the solar wind influence on magnetospheric ULF wave activity through the characterisation of the solar wind driver by its variability using the standard deviation of solar wind parameters rather than a simple time average. We present a statistical study of nearly one solar cycle (1996–2004) of geosynchronous observations of magnetic ULF wave power and find that there is significant variation in ULF wave powers as a function of the dynamic properties of the solar wind. In particular, we find that the variability in IMF vector, rather than variabilities in other parameters (solar wind density, bulk velocity and ion temperature), plays the strongest role in controlling geosynchronous ULF power. We conclude that, although time-averaged bulk properties of the solar wind are a key factor in driving ULF powers in the magnetosphere, the solar wind variability can be an important contributor as well. This highlights the potential importance of including solar wind variability especially in studies of ULF wave dynamics in order to assess the efficiency of solar wind–magnetosphere coupling

    Thresholds for tracing ships' ballast water: An Australian case study

    Full text link
    To limit the spread of non-indigenous marine species, ships can be legally required to conduct ballast water exchange (BWE) prior to discharging ballast water. It has been proposed to verify BWE by measuring concentrations of coastal tracers in ballast tanks, which should track their removal. Using 3 Australian ports as case studies (Port Botany, Port Curtis and Port Phillip Bay), each representing a different BWE verification difficulty level, the spatial and temporal variability of chromophoric dissolved organic matter (CDOM) and 3 trace elements (manganese [Mn], barium [Ba] and phosphorus [P]), were measured to assess their utility as tracers of coastal (unexchanged) ballast water. CDOM fluorescence at λex/λem = 320/414 nm (C2*) and 370/494 nm (C3*) and Mn concentrations were significantly higher in ports than in the adjacent Tasman Sea, except near port entrances and at a few sites in Port Botany. Ba concentrations demonstrated the least power to discriminate coastal sources, but P easily discriminated water from mesotrophic Port Phillip Bay. In general, tracers showed greater variation between and within ports, rather than between seasons. Conservative BWE thresholds were calculated to be 1.6 quinine sulphate equivalents for C2*, 0.9 quinine sulphate equivalents for C3*, 1.4 μg l-1 for Mn and 6.9 μg l -1 for Ba. Overall, these thresholds would allow water sourced from eastern Australian ports to be identified as coastal at 92%, 69% and 74% of sites examined using C3*, Mn and Ba, respectively, requiring 71 ± 26%, 54 ± 40% and 59 ± 38% replacement with mid-ocean water to be within ocean baseline concentration ranges. © Inter-Research 2010 · www.int-res.com

    Effects of ULF wave power on relativistic radiation belt electrons: 8-9 October 2012 geomagnetic storm

    Get PDF
    Electromagnetic ultralow-frequency (ULF) waves are known to play a substantial role in radial transport, acceleration, and loss of relativistic particles trapped in the Earth's outer radiation belt. Using in situ observations by multiple spacecraft operating in the vicinity of outer radiation belts, we analyze the temporal and spatial behavior of ULF waves throughout the geomagnetic storm of 8–9 October 2012 and compare with the dynamics of relativistic electron fluxes on board the twin Van Allen Probes spacecraft. The analysis shows that the relativistic electron fluxes reduce from their prestorm levels during the first phase of the storm and rapidly increase during the second phase of the storm. We demonstrate that the behavior of ULF wave power changes throughout the storm, from ULF oscillations being a mixture of compressional and shear magnetic components during the first phase of the storm to ULF oscillations being dominated by transverse (shear) components during the second phase. We analyze the parameters of ULF-driven radial diffusion throughout the storm and compare the observed diffusion coefficients with their statistical averages. We demonstrate that the observed diffusion coefficients are strong enough to impact the redistribution of relativistic electron fluxes from and to the outer boundary of radiation belts and the diffusion might influence the effects of any local electron acceleration by transporting fluxes inward or outward according to phase space density gradients

    Statistical Characterization of the Dynamic Near‐Earth Plasma Sheet Relative to Ultra‐Low Frequency (ULF) Wave Growth at Substorm Onset

    Get PDF
    Magnetospheric substorms are a complex phenomenon. During the initial stages of a substorm a variety of important processes occur in near-Earth space within a span of several minutes. The relative timing and links between these processes are critical to understanding how, where and when substorms may occur. One of the first observed signatures at substorm onset is the exponential increase in ULF (Ultra-Low Frequency) wave power in the near-Earth magnetotail (e.g., −7.5 ≤ XGSM ≤ −12.5 RE). We use the Time History of Events and Macroscale Interactions during Substorms spacecraft to examine the conditions in the magnetotail plasma sheet before, during and after local ULF wave growth. Prior to the ULF wave growth, the magnetotail stretches with convectional flows dominating. We then find strong earthward and azimuthal flows that peak at a similar time to the peak ULF wave power. These flows are found to be faster in the mid-tail (−10 ≤ XGSM ≤ −12.5 RE) than the near-tail (−7.5 ≤ XGSM ≤ −10 RE). Examining the local plasma energy density (magnetic, thermal and kinetic), we find no statistical decrease that could explain the exponentially growing ULF waves, in fact the local energy density is found to increase. This suggests that there may be an injection of energy from elsewhere in the magnetotail. Following the peak ULF wave power the tail is seen to dipolarize, and the local energy density is enhanced

    Lifting defects for nonstable K_0-theory of exchange rings and C*-algebras

    Full text link
    The assignment (nonstable K_0-theory), that to a ring R associates the monoid V(R) of Murray-von Neumann equivalence classes of idempotent infinite matrices with only finitely nonzero entries over R, extends naturally to a functor. We prove the following lifting properties of that functor: (1) There is no functor F, from simplicial monoids with order-unit with normalized positive homomorphisms to exchange rings, such that VF is equivalent to the identity. (2) There is no functor F, from simplicial monoids with order-unit with normalized positive embeddings to C*-algebras of real rank 0 (resp., von Neumann regular rings), such that VF is equivalent to the identity. (3) There is a {0,1}^3-indexed commutative diagram D of simplicial monoids that can be lifted, with respect to the functor V, by exchange rings and by C*-algebras of real rank 1, but not by semiprimitive exchange rings, thus neither by regular rings nor by C*-algebras of real rank 0. By using categorical tools from an earlier paper (larders, lifters, CLL), we deduce that there exists a unital exchange ring of cardinality aleph three (resp., an aleph three-separable unital C*-algebra of real rank 1) R, with stable rank 1 and index of nilpotence 2, such that V(R) is the positive cone of a dimension group and V(R) is not isomorphic to V(B) for any ring B which is either a C*-algebra of real rank 0 or a regular ring.Comment: 34 pages. Algebras and Representation Theory, to appea

    Statistical azimuthal structuring of the substorm onset arc: Implications for the onset mechanism

    Get PDF
    The onset of an auroral substorm is generally thought to occur on a quiet, homogeneous auroral arc. We present a statistical study of independently selected substorm onset arcs and find that over 90% of the arcs studied have resolvable characteristic spatial scales in the form of auroral beads. We find that the vast majority (~88%) of auroral beads have small amplitudes relative to the background, making them invisible without quantitative analysis. This confirms that auroral beads are highly likely to be ubiquitous to all onset arcs, rather than a special case phenomena as previously thought. Moreover, as these auroral beads grow exponentially through onset, we conclude that a magnetospheric plasma instability is fundamental to substorm onset itself

    Seeing Tree Structure from Vibration

    Full text link
    Humans recognize object structure from both their appearance and motion; often, motion helps to resolve ambiguities in object structure that arise when we observe object appearance only. There are particular scenarios, however, where neither appearance nor spatial-temporal motion signals are informative: occluding twigs may look connected and have almost identical movements, though they belong to different, possibly disconnected branches. We propose to tackle this problem through spectrum analysis of motion signals, because vibrations of disconnected branches, though visually similar, often have distinctive natural frequencies. We propose a novel formulation of tree structure based on a physics-based link model, and validate its effectiveness by theoretical analysis, numerical simulation, and empirical experiments. With this formulation, we use nonparametric Bayesian inference to reconstruct tree structure from both spectral vibration signals and appearance cues. Our model performs well in recognizing hierarchical tree structure from real-world videos of trees and vessels.Comment: ECCV 2018. The first two authors contributed equally to this work. Project page: http://tree.csail.mit.edu

    Diagnosing the Role of Alfvén Waves in Magnetosphere-Ionosphere Coupling: Swarm Observations of Large Amplitude Nonstationary Magnetic Perturbations During an Interval of Northward IMF

    Get PDF
    High-resolution multispacecraft Swarm data are used to examine magnetosphere-ionosphere coupling during a period of northward interplanetary magnetic field (IMF) on 31 May 2014. The observations reveal a prevalence of unexpectedly large amplitude (>100 nT) and time-varying magnetic perturbations during the polar passes, with especially large amplitude magnetic perturbations being associated with large-scale downward field-aligned currents. Differences between the magnetic field measurements sampled at 50 Hz from Swarm A and C, approximately 10 s apart along track, and the correspondence between the observed electric and magnetic fields at 16 samples per second, provide significant evidence for an important role for Alfvén waves in magnetosphere-ionosphere coupling even during northward IMF conditions. Spectral comparison between the wave E- and B-fields reveals a frequency-dependent phase difference and amplitude ratio consistent with interference between incident and reflected Alfvén waves. At low frequencies, the E/B ratio is in phase with an amplitude determined by the Pedersen conductance. At higher frequencies, the amplitude and phase change as a function of frequency in good agreement with an ionospheric Alfvén resonator model including Pedersen conductance effects. Indeed, within this Alfvén wave incidence, reflection, and interference paradigm, even quasi-static field-aligned currents might be reasonably interpreted as very low frequency (ω → 0) Alfvén waves. Overall, our results not only indicate the importance of Alfvén waves for magnetosphere-ionosphere coupling but also demonstrate a method for using Swarm data for the innovative experimental diagnosis of Pedersen conductance from low-Earth orbit satellite measurements

    The Response of Electron Pitch Angle Distributions to the Upper Limit on Stably Trapped Particles

    Get PDF
    We use Van Allen Probes electron data during 70 geomagnetic storms to examine the response of equatorial pitch angle distributions (PADs) at L* = 4.0–4.5 to a theoretical upper limit on stably trapped particle fluxes. Of the energies examined, 54 and 108 keV electron PADs isotropize to a previously assumed level within 6 hr of reaching the limit, near-identically across all 70 storms, consistent with rapid pitch angle scattering due to chorus wave interactions. In around 30% of events, 54 keV electrons completely exceed the KP limit, before being quickly subdued. 470 and 749 keV PADs show clear indications of an upper limit, though less aligned with the calculated limit used here. The consistency of an absolute upper limit shown across all events demonstrates the importance of this phenomena in both the limiting effect on electron flux and consistently influencing electron PAD evolution during geomagnetic storms. These results also highlight the need for further investigation, particularly related to the limiting of higher energy electrons
    corecore