CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Thresholds for tracing ships' ballast water: An Australian case study
Authors
MA Doblin
KR Murphy
GM Ruiz
Publication date
3 June 2010
Publisher
'Inter-Research Science Center'
Doi
Cite
Abstract
To limit the spread of non-indigenous marine species, ships can be legally required to conduct ballast water exchange (BWE) prior to discharging ballast water. It has been proposed to verify BWE by measuring concentrations of coastal tracers in ballast tanks, which should track their removal. Using 3 Australian ports as case studies (Port Botany, Port Curtis and Port Phillip Bay), each representing a different BWE verification difficulty level, the spatial and temporal variability of chromophoric dissolved organic matter (CDOM) and 3 trace elements (manganese [Mn], barium [Ba] and phosphorus [P]), were measured to assess their utility as tracers of coastal (unexchanged) ballast water. CDOM fluorescence at λex/λem = 320/414 nm (C2*) and 370/494 nm (C3*) and Mn concentrations were significantly higher in ports than in the adjacent Tasman Sea, except near port entrances and at a few sites in Port Botany. Ba concentrations demonstrated the least power to discriminate coastal sources, but P easily discriminated water from mesotrophic Port Phillip Bay. In general, tracers showed greater variation between and within ports, rather than between seasons. Conservative BWE thresholds were calculated to be 1.6 quinine sulphate equivalents for C2*, 0.9 quinine sulphate equivalents for C3*, 1.4 μg l-1 for Mn and 6.9 μg l -1 for Ba. Overall, these thresholds would allow water sourced from eastern Australian ports to be identified as coastal at 92%, 69% and 74% of sites examined using C3*, Mn and Ba, respectively, requiring 71 ± 26%, 54 ± 40% and 59 ± 38% replacement with mid-ocean water to be within ocean baseline concentration ranges. © Inter-Research 2010 · www.int-res.com
Similar works
Full text
Available Versions
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 14/09/2015