961 research outputs found

    Updated global SMEFT fit to Higgs, diboson and electroweak data

    Get PDF
    The ATLAS and CMS collaborations have recently released significant new data on Higgs and diboson production in LHC Run 2. Measurements of Higgs properties have improved in many channels, while kinematic information for h→γγ and h→ZZ can now be more accurately incorporated in fits using the STXS method, and W + W − diboson production at high p T gives new sensitivity to deviations from the Standard Model. We have performed an updated global fit to precision electroweak data, W + W − measurements at LEP, and Higgs and diboson data from Runs 1 and 2 of the LHC in the framework of the Standard Model Effective Field Theory (SMEFT), allowing all coefficients to vary across the combined dataset, and present the results in both the Warsaw and SILH operator bases. We exhibit the improvement in the constraints on operator coefficients provided by the LHC Run 2 data, and discuss the correlations between them. We also explore the constraints our fit results impose on several models of physics beyond the Standard Model, including models that contribute to the operator coefficients at the tree level and stops in the MSSM that contribute via loops

    Quantitative Measurement of Cyber Resilience: Modeling and Experimentation

    Full text link
    Cyber resilience is the ability of a system to resist and recover from a cyber attack, thereby restoring the system's functionality. Effective design and development of a cyber resilient system requires experimental methods and tools for quantitative measuring of cyber resilience. This paper describes an experimental method and test bed for obtaining resilience-relevant data as a system (in our case -- a truck) traverses its route, in repeatable, systematic experiments. We model a truck equipped with an autonomous cyber-defense system and which also includes inherent physical resilience features. When attacked by malware, this ensemble of cyber-physical features (i.e., "bonware") strives to resist and recover from the performance degradation caused by the malware's attack. We propose parsimonious mathematical models to aid in quantifying systems' resilience to cyber attacks. Using the models, we identify quantitative characteristics obtainable from experimental data, and show that these characteristics can serve as useful quantitative measures of cyber resilience.Comment: arXiv admin note: text overlap with arXiv:2302.04413, arXiv:2302.0794

    An Experimentation Infrastructure for Quantitative Measurements of Cyber Resilience

    Full text link
    The vulnerability of cyber-physical systems to cyber attack is well known, and the requirement to build cyber resilience into these systems has been firmly established. The key challenge this paper addresses is that maturing this discipline requires the development of techniques, tools, and processes for objectively, rigorously, and quantitatively measuring the attributes of cyber resilience. Researchers and program managers need to be able to determine if the implementation of a resilience solution actually increases the resilience of the system. In previous work, a table top exercise was conducted using a notional heavy vehicle on a fictitious military mission while under a cyber attack. While this exercise provided some useful data, more and higher fidelity data is required to refine the measurement methodology. This paper details the efforts made to construct a cost-effective experimentation infrastructure to provide such data. It also presents a case study using some of the data generated by the infrastructure.Comment: 6 pages, 2022 IEEE Military Communications Conference, pp. 855-86

    Discrete or indiscrete? Redefining the colour polymorphism of the land snail Cepaea nemoralis

    Get PDF
    Biologists have long tried to describe and name the different phenotypes that make up the shell polymorphism of the land snail Cepaea nemoralis. Traditionally, the view is that the ground colour of the shell is one of a few major colour classes, either yellow, pink or brown, but in practise it is frequently difficult to distinguish the colours, and define different shades of the same colour. To understand whether colour variation is in reality continuous, and to investigate how the variation may be perceived by an avian predator, we applied psychophysical models of colour vision to shell reflectance measures. We found that both achromatic and chromatic variation are indiscrete in Cepaea nemoralis, being continuously distributed over many perceptual units. Nonetheless, clustering analysis based on the density of the distribution did reveal three groups, roughly corresponding to human-perceived yellow, pink and brown shells. We also found large-scale geographic variation in the frequency of these groups across Europe, and some covariance between shell colour and banding patterns. Although further studies are necessary, the observation of continuous variation in colour is intriguing because the traditional theory is that the underlying supergene that determines colour has evolved to prevent phenotypes from “dissolving” into continuous trait distributions. The findings thus have significance for understanding the Cepaea polymorphism, and the nature of the selection that acts upon it, as well as more generally highlighting the need to measure colour objectively in other systems

    Cosmological thermodynamics and deflationary gas universe

    Get PDF
    We establish a general thermodynamic scheme for cosmic fluids with internal self-interactions and discuss equilibrium and non-equilibrium aspects of such systems in connection with (generalized) symmetry properties of the cosmological dynamics. As an example we construct an exactly solvable gas dynamical model of a ``deflationary'' transition from an initial de Sitter phase to a subsequent Friedmann-Lema\^{\i}tre-Robertson-Walker (FLRW) period. We demonstrate that this dynamics represents a manifestation of a conformal symmetry of an ``optical'' metric, characterized by a specific effective refraction index of the cosmic medium.Comment: 12 pages, to appear in PR

    The effect of meteorological and chemical factors on the agreement between observations and predictions of fine aerosol composition in southwestern Ontario during BAQS-Met

    Get PDF
    The Border Air Quality and Meteorology Study (BAQS-Met) was an intensive, collaborative field campaign during the summer of 2007 that investigated the effects of transboundary pollution, local pollution, and local meteorology on air quality in southwestern Ontario. This analysis focuses on the measurements of the inorganic constituents of particulate matter with diameter of less than 1 ÎŒm (PM<sub>1</sub>), with a specific emphasis on nitrate. We evaluate the ability of AURAMS, Environment Canada's chemical transport model, to represent regional air pollution in SW Ontario by comparing modelled aerosol inorganic chemical composition with measurements from Aerosol Mass Spectrometers (AMS) onboard the National Research Council (NRC) of Canada Twin Otter aircraft and at a ground site in Harrow, ON. The agreement between modelled and measured <i>p</i>NO<sub>3</sub><sup>−</sup> at the ground site (observed mean (M<sub>obs</sub>) = 0.50 ÎŒg m<sup>−3</sup>; modelled mean (M<sub>mod</sub>) = 0.58 ÎŒg m<sup>−3</sup>; root mean square error (RSME) = 1.27 ÎŒg m<sup>−3</sup>) was better than aloft (M<sub>obs</sub> = 0.32 ÎŒg m<sup>−3</sup>; M<sub>mod</sub> = 0.09 ÎŒg m<sup>−3</sup>; RSME = 0.48 ÎŒg m<sup>−3</sup>). Possible reasons for discrepancies include errors in (i) emission inventories, (ii) atmospheric chemistry, (iii) predicted meteorological parameters, or (iv) gas/particle thermodynamics in the model framework. Using the inorganic thermodynamics model, ISORROPIA, in an offline mode, we find that the assumption of thermodynamic equilibrium is consistent with observations of gas and particle composition at Harrow. We develop a framework to assess the sensitivity of PM<sub>1</sub> nitrate to meteorological and chemical parameters and find that errors in both the predictions of relative humidity and free ammonia (FA ≡ NH<sub>3</sub><sub>(g)</sub> + <i>p</i>NH<sub>4</sub><sup>+</sup> − 2 · <i>p</i>SO<sub>4</sub><sup>2-</sup>) are responsible for the poor agreement between modelled and measured values

    Diversification and agrarian change under environmental constraints in rural China: Evidence from a poor township of Beijing municipality

    Get PDF
    Working paper du GATE 2007-11This article illustrates the impact of changes related to market reforms and environmental policies on the economic structure in rural China by providing a comparative analysis of several villages in a poor township in Beijing municipality. Two main concomitant phenomena are affecting agricultural and non-agricultural choices in the studied area. First, the introduction of market mechanisms is encouraging local population to engage in new activities that are closer to local comparative advantages. Second, rural households are facing new constraints in the form of environmental protection measures, which have weakened traditional insurance channels provided by forest resources and cattle stock. Drawing on household-level survey data and interviews with village heads conducted in ten villages of Labagoumen township in December 2003, this article analyzes households decisions in response to market reforms and environmental constraints. We find large disparities both between villages and households in the diversification process and discuss the reasons of observed inertia in the region, most households still heavily relying on corn production

    Sensitivity Parameter and Time Variations of Fundamental Constants

    Full text link
    The sensitivity parameter is widely used for quantifying fine tuning. However, examples show it fails to give correct results under certain circumstances. We argue that the problems of the sensitivity parameter are almost identical to the consequences we have to solved if the time-varying fine structure constant is proved to be true. The high sensitivity of the energy scale parameter (\Lambda) to the dimensionless coupling constant plays an important role in these problems. It affects the reliability of the sensitivity parameter via mechanisms such as dynamical symmetry breaking, chiral symmetry breaking etc. The reliability of the sensitivity parameter can be improved if it is used properly.Comment: 6 page

    The Las Campanas IR Survey: Early Type Galaxy Progenitors Beyond Redshift One

    Get PDF
    (Abridged) We have identified a population of faint red galaxies from a 0.62 square degree region of the Las Campanas Infrared Survey whose properties are consistent with their being the progenitors of early-type galaxies. The optical and IR colors, number-magnitude relation and angular clustering together indicate modest evolution and increased star formation rates among the early-type field population at redshifts between one and two. The counts of red galaxies with HH magnitudes between 17 and 20 rise with a slope that is much steeper than that of the total H sample. The surface density of red galaxies drops from roughly 3000 per square degree at H = 20.5, I-H > 3 to ~ 20 per square degree at H = 20, I-H > 5. The V-I colors are approximately 1.5 magnitudes bluer on average than a pure old population and span a range of more than three magnitudes. The colors, and photometric redshifts derived from them, indicate that the red galaxies have redshift distributions adequately described by Gaussians with sigma_z ~ 0.2centerednearredshiftone,withtheexceptionthatgalaxieshaving centered near redshift one, with the exception that galaxies having V-I3$ are primarily in the 1.5 < z < 2 range. We find co-moving correlation lengths of 9-10 Mpc at z ~ 1, comparable to, or larger than, those found for early-type galaxies at lower redshifts. A simple photometric evolution model reproduces the counts of the red galaxies, with only a ~ 30% decline in the underlying space density of early-type galaxies at z ~ 1.2. We suggest on the basis of the colors, counts, and clustering that these red galaxies are the bulk of the progenitors of present day early-type galaxies.Comment: 5 pages, 3 figures, accepted for publication in the ApJ Letter
    • 

    corecore