2,043 research outputs found

    The Third Dimension of Reading the Sugar Code by Lectins

    Get PDF
    Coding of biological information is not confined to nucleic acids and proteins. Endowed with the highest level of structural versatility among biomolecules, the glycan chains of cellular glycoconjugates are well-suited to generate molecular messages/signals in a minimum of space. The sequence and shape of oligosaccharides as well as spatial aspects of multivalent presentation are assumed to underlie the natural specificity/selectivity that cellular glycans have for endogenous lectins. In order to eventually unravel structure-activity profiles cyclic scaffolds have been used as platforms to produce glycoclusters and afford valuable tools. Using adhesion/growth-regulatory galectins and the pan-galectin ligand lactose as a model, emerging insights into the potential of cyclodextrins, cyclic peptides, calixarenes and glycophanes for this purpose are presented herein. The systematic testing of lectin panels with spatially defined ligand presentations can be considered as a biomimetic means to help clarify the mechanisms, which lead to the exquisite accuracy at which endogenous lectins select their physiological counterreceptors from the complexity of the cellular glycome

    The Good War : Collective Memory and World War II in America

    Get PDF

    Microcavity supported lipid membranes: versatile platforms for building asymmetric lipid bilayers and for protein recognition

    Get PDF
    Microcavity supported lipid bilayers (MSLB) are contact-free membranes suspended across aqueousfilled pores that maintain the lipid bilayer in a highly fluidic state and free from frictional interactions with substrate. Such platforms offer the prospect of liposome-like fluidity with the compositional versatility and addressability of supported lipid bilayers and thus offer significant opportunity for modelling membrane asymmetry, protein-membrane interactions and aggregation at the membrane interface. Herein, we evaluate their performance by studying the effect of transmembrane lipid asymmetry on lipid diffusivity, membrane viscosity and cholera toxin- ganglioside recognition across six symmetric and asymmetric membranes including binary compositions containing both fluid and gel phase, and ternary phase separated membrane compositions. Fluorescence lifetime correlation spectroscopy (FLCS) was used to determine the lateral mobility of lipid and protein, and electrochemical impedance spectroscopy (EIS) enabled detection of protein-membrane assembly over the nanomolar range. Transmembrane leaflet asymmetry was observed to have profound impact on membrane electrochemical resistance where the resistance of a ternary symmetric phase separated bilayer was found to be at least 2.6 times higher than the asymmetric bilayer with analogous composition at the distal leaflet but where the lower leaflet comprised only 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Similarly, the diffusion coefficient for MSLBs was observed to be 2.5 fold faster for asymmetric MSLBs where the lower leaflet is DOPC alone. Our results demonstrate that interplay of lipid packing across both membrane leaflets and concentration of GM1 both affect the extent of cholera toxin aggregation and consequent diffusion of the cholera-GM1 aggregates. Given that true biomembranes are both fluidic and asymmetric, MSLBs offer the opportunity for building greater biomimicry into biophysical models and the approach described demonstrates the value of MSLBs in studying aggregation and membrane associated multivalent interactions prevalent in many carbohydrates mediated processes

    The host galaxies of strong CaII QSO absorption systems at z<0.5

    Full text link
    We present new imaging and spectroscopic observations of the fields of five QSOs with very strong intervening CaII absorption systems at redshifts z<0.5 selected from the Sloan Digital Sky Survey. Recent studies of these very rare absorbers indicate that they may be related to damped Lyman alpha systems (DLAs). In all five cases we identify a galaxy at the redshift of the CaII system with impact parameters up to ~24 kpc. In four out of five cases the galaxies are luminous (L ~L*), metal-rich (Z ~Zsun), massive (velocity dispersion, sigma ~100 km/s) spirals. Their star formation rates, deduced from Halpha emission, are high, in the range SFR = 0.3 - 30 Msun/yr. In our analysis, we paid particular attention to correcting the observed emission line fluxes for stellar absorption and dust extinction. We show that these effects are important for a correct SFR estimate; their neglect in previous low-z studies of DLA-selected galaxies has probably led to an underestimate of the star formation activity in at least some DLA hosts. We discuss possible links between CaII-selected galaxies and DLAs and outline future observations which will help clarify the relationship between these different classes of QSO absorbers.Comment: Accepted for publication in MNRAS, 14 pages, 9 figures. Version with full resolution images available at http://www.ast.cam.ac.uk/~bjz/papers/Zych_etal_2007a.pd

    Synthesis of bivalent glycoclusters containing GlcNAc as hexasaccharide mimetics. Bactericidal activity against Helicobacter pylori.

    Get PDF
    Journal articleThe Cu(I) catalysed cycloaddition reaction of azides and alkynes has been used to generate a series of divalent GlcNAc clusters with both α and ÎÂČ configurations. These glycoclusters can be considered as potential mimetics of an anti Helicobacter pylori hexasaccharide as they present two GlcNAc residues grafted onto a core scaffold. Two bivalent compounds based on α-O-GlcNAc were identified that selectively reduced the viability of H. pylori. These compounds showed activity towards different strains of H. pylori (Pu4 vs P12). The activity of the oligosaccharide mimetics is speculated to be due to the GlcNAc residues being able to adopt spatial arrangements accessible to the anti H. pylori hexasaccharide which may be important for activity.Science Foundation Ireland (08/SRC/B1393); IRCSETpeer-reviewe

    Lectins: getting familiar with translators of the sugar code

    Get PDF
    The view on the significance of the presence of glycans in glycoconjugates is undergoing a paradigmatic change. Initially mostly considered to be rather inert and passive, the concept of the sugar code identifies glycans as highly versatile platform to store information. Their chemical properties endow carbohydrates to form oligomers with unsurpassed structural variability. Owing to their capacity to engage in hydrogen (and coordination) bonding and C-H/π-interactions these "code words" can be "read" (in Latin, legere) by specific receptors. A distinct class of carbohydrate-binding proteins are the lectins. More than a dozen protein folds have developed carbohydrate-binding capacity in vertebrates. Taking galectins as an example, distinct expression patterns are traced. The availability of labeled endogenous lectins facilitates monitoring of tissue reactivity, extending the scope of lectin histochemistry beyond that which traditionally involved plant lectins. Presentation of glycan and its cognate lectin can be orchestrated, making a glycan-based effector pathway in growth control of tumor and activated T cells possible. In order to unravel the structural basis of lectin specificity for particular glycoconjugates mimetics of branched glycans and programmable models of cell surfaces are being developed by strategic combination of lectin research with synthetic and supramolecular chemistry

    Inhibition of Burkholderia Multivorans Adhesion to Lung Epithelial Cells by Bivalent Lactosides

    Get PDF
    Burkholderia cepacia complex (Bcc) is an opportunistic pathogen in cystic fibrosis patients which is inherently resistant to antimicrobial agents. The mechanisms of attachment and pathogenesis of Bcc, a group of 17 species, are poorly understood. The most commonly identified Bcc species in newly colonised patients, Burkholderia multivorans, continues to be acquired from the environment. Development of therapies which can prevent or reduce the risk of colonization on exposure to Bcc in the environment would be a better alternative to antimicrobial agents. Previously, it has been shown that Bcc strains bound to many glycolipid receptors on lung epithelia. Using a real-time PCR method to quantify the levels of binding of B. multivorans to the lung epithelial cells, we have examined glycoconjugate derivatives for their potential to inhibit host cell attachment. Bivalent lactosides previously shown to inhibit galectin binding significantly reduced the attachment of B. multivorans to CF lung epithelial cells at micromolar concentrations. This was in contrast to monosaccharides and lactose, which were only effective in the millimolar range. Development of glycoconjugate therapies such as these, which inhibit attachment to lung epithelial cells, represent an alternative means of preventing infection with inherently antimicrobially resistant pathogens such as B. multivorans
    • 

    corecore