127 research outputs found

    Tapering Enhanced Stimulated Superradiant Oscillator

    Full text link
    In this paper, we present a new kind of high power and high efficiency free-electron laser oscillator based on the application of the tapering enhanced stimulated superradiant amplification (TESSA) scheme. The main characteristic of the TESSA scheme is a high intensity seed pulse which provides high gradient beam deceleration and efficient energy extraction. In the oscillator configuration, the TESSA undulator is driven by a high repetition rate electron beam and embedded in an optical cavity. A beam-splitter is used for outcoupling a fraction of the amplified power and recirculate the remainder as the intense seed for the next electron beam pulse. The mirrors in the oscillator cavity refocus the seed at the undulator entrance and monochromatize the radiation. In this paper we discuss the optimization of the system for a technologically relevant example at 1 μ\mum using a 1~MHz repetition rate electron linac starting with an externally injected igniter pulse.Comment: 24 pages, 13 figure

    Summary Report Topical Group on Application and Industry Community Engagement Frontier Snowmass 2021

    Full text link
    HEP community leads and operates cutting-edge experiments for the DOE Office of Science which have challenging sensing, data processing, and computing requirements that far surpass typical industrial applications. To make necessary progress in the energy, material, and fundamental sciences, development of novel technologies is often required to enable these advanced detector and accelerator programs. Our capabilities include efficient co-design, which is a prerequisite to enable the deployment of advanced techniques in a scientific setting where development spans from rapid prototyping to robust and reliable production scale. This applies across the design spectrum from the low level fabrication techniques to the high level software development. It underpins the requirement for a holistic approach of innovation that accelerates the cycle of technology development and deployment. The challenges set by the next generation of experiments requires a collaborative approach between academia, industry and national labs. Just a single stakeholder will be unable to deliver the technologies required for the success of the scientific goals. Tools and techniques developed for High Energy Physics (HEP) research can accelerate scientific discovery more broadly across DOE Office of Science and other federal initiatives and also benefit industry applications

    Amp\`ere-Class Pulsed Field Emission from Carbon-Nanotube Cathodes in a Radiofrequency Resonator

    Get PDF
    Pulsed field emission from cold carbon-nanotube cathodes placed in a radiofrequency resonant cavity was observed. The cathodes were located on the backplate of a conventional 1+121+\frac{1}{2}-cell resonant cavity operating at 1.3-GHz and resulted in the production of bunch train with maximum average current close to 0.7 Amp\`ere. The measured Fowler-Nordheim characteristic, transverse emittance, and pulse duration are presented and, when possible, compared to numerical simulations. The implications of our results to high-average-current electron sources are briefly discussed.Comment: 5 pages, 6 figures; submitted to Applied Physics Letter

    Nanometer Thick Diffused Hafnium and Titanium Oxide Light Sensing Film Structures

    Full text link
    We examine 10 nm thick film structures containing either Hf or Ti sandwiched between two respective oxide layers.The layers are deposited onto heated substrates to create a diffusion region.We observe a high degree of light sensitivity of the electric current through the film thickness for one polarity of an applied voltage. For the other polarity, the current is not affected by the light. We explain the observed phenomenology using the single-particle model based on the existence of interface states on the metal-oxide interfaces

    Upgrades of beam diagnostics in support of emittance-exchange experiments at the Fermilab A0 photoinjector

    Get PDF
    The possibility of using electron beam phase space manipulations to support a free-electron laser accelerator design optimization has motivated our research. An on-going program demonstrating the exchange of transverse horizontal and longitudinal emittances at the Fermilab A0 photoinjector has benefited recently from the upgrade of several of the key diagnostics stations. Accurate measurements of these properties upstream and downstream of the exchanger beamline are needed. Improvements in the screen resolution term and reduced impact of the optical system's depth-of-focus by using YAG:Ce single crystals normal to the beam direction will be described. The requirement to measure small energy spreads (<10 keV) in the spectrometer and the exchange process which resulted in bunch lengths less than 500 fs led to other diagnostics performance adjustments and upgrades as well. A longitudinal to transverse exchange example is also reported.Comment: 16 p

    Electron beam profile imaging in the presence of coherent optical radiation effects

    Full text link
    High-brightness electron beams with low energy spread at existing and future x-ray free-electron lasers are affected by various collective beam self-interactions and microbunching instabilities. The corresponding coherent optical radiation effects, e.g., coherent optical transition radiation, render electron beam profile imaging impossible and become a serious issue for all kinds of electron beam diagnostics using imaging screens. Furthermore, coherent optical radiation effects can also be related to intrinsically ultrashort electron bunches or the existence of ultrashort spikes inside the electron bunches. In this paper, we discuss methods to suppress coherent optical radiation effects both by electron beam profile imaging in dispersive beamlines and by using scintillation imaging screens in combination with separation techniques. The suppression of coherent optical emission in dispersive beamlines is shown by analytical calculations, numerical simulations, and measurements. Transverse and longitudinal electron beam profile measurements in the presence of coherent optical radiation effects in non-dispersive beamlines are demonstrated by applying a temporal separation technique.Comment: 12 pages, 11 figures, submitted to Phys. Rev. ST Accel. Beam

    Tunable Electron Multibunch Production in Plasma Wakefield Accelerators

    Get PDF
    Synchronized, independently tunable and focused μ\muJ-class laser pulses are used to release multiple electron populations via photo-ionization inside an electron-beam driven plasma wave. By varying the laser foci in the laboratory frame and the position of the underdense photocathodes in the co-moving frame, the delays between the produced bunches and their energies are adjusted. The resulting multibunches have ultra-high quality and brightness, allowing for hitherto impossible bunch configurations such as spatially overlapping bunch populations with strictly separated energies, which opens up a new regime for light sources such as free-electron-lasers

    DESIGN FOR A FAST, XFEL-QUALITY WIRE SCANNER

    Get PDF
    Abstract RadiaBeam Technologies has designed and manufactured a new wire scanner for high-speed emittance measurements of XFEL-type beams of energy 139 MeV. Using three 25-micron thick tungsten wires, this wire scanner measures vertical and horizontal beam size as well as transverse spatial correlation in one pass. The intensity of the beam at a wire position is determined from emitted bremsstrahlung photons as measured by a BGO scintillator system. The wires are transported on a two-ended support structure moved by a ball-screw linear stage. The doubleended structure reduces vibrations in the wire holder, and the two-bellows design negates the effects of air pressure on the motion. The expected minimum beam size measurable by this system is on the order of 10 microns with 0.1-micron accuracy. To achieve this, new algorithms are presented that reduce the effect of the non-zero thickness of the wire on the wire scan output. In addition, novel calculations are presented for determining the elliptical geometric parameters (vertical and horizontal beam size and correlation, or alternatively, the axis lengths and rotation) of the beam from the wire scanner measurements
    • …
    corecore