6 research outputs found

    Analysis of RET promoter CpG island methylation using methylation-specific PCR (MSP), pyrosequencing, and methylation-sensitive high-resolution melting (MS-HRM): impact on stage II colon cancer patient outcome.

    Get PDF
    International audienceBackground: Already since the 1990s, promoter CpG island methylation markers have been considered promising diagnostic, prognostic, and predictive cancer biomarkers. However, so far, only a limited number of DNA methylation markers have been introduced into clinical practice. One reason why the vast majority of methylation markers do not translate into clinical applications is lack of independent validation of methylation markers, often caused by differences in methylation analysis techniques. We recently described RET promoter CpG island methylation as a potential prognostic marker in stage II colorectal cancer (CRC) patients of two independent series.Methods: In the current study, we analyzed the RET promoter CpG island methylation of 241 stage II colon cancer patients by direct methylation-specific PCR (MSP), nested-MSP, pyrosequencing, and methylation-sensitive high-resolution melting (MS-HRM). All primers were designed as close as possible to the same genomic region. In order to investigate the effect of different DNA methylation assays on patient outcome, we assessed the clinical sensitivity and specificity as well as the association of RET methylation with overall survival for three and five years of follow-up.Results: Using direct-MSP and nested-MSP, 12.0 % (25/209) and 29.6 % (71/240) of the patients showed RET promoter CpG island methylation. Methylation frequencies detected by pyrosequencing were related to the threshold for positivity that defined RET methylation. Methylation frequencies obtained by pyrosequencing (threshold for positivity at 20 %) and MS-HRM were 13.3 % (32/240) and 13.8 % (33/239), respectively. The pyrosequencing threshold for positivity of 20 % showed the best correlation with MS-HRM and direct-MSP results. Nested-MSP detected RET promoter CpG island methylation in deceased patients with a higher sensitivity (33.1 %) compared to direct-MSP (10.7 %), pyrosequencing (14.4 %), and MS-HRM (15.4 %). While RET methylation frequencies detected by nested-MSP, pyrosequencing, and MS-HRM varied, the prognostic effect seemed similar (HR 1.74, 95 % CI 0.97-3.15; HR 1.85, 95 % CI 0.93-3.86; HR 1.83, 95 % CI 0.92-3.65, respectively).Conclusions: Our results show that upon optimizing and aligning four RET methylation assays with regard to primer location and sensitivity, differences in methylation frequencies and clinical sensitivities are observed; however, the effect on the marker's prognostic outcome is minimal

    Identification of DNA methylation markers for early detection of CRC indicates a role for nervous system-related genes in CRC

    Get PDF
    Purpose: Colonoscopy and the fecal immunochemical test (FIT) are currently the most widely used screening modalities for colorectal cancer (CRC), however, both with their own limitations. Here we aim to identify and validate stool-based DNA methylation markers for the early detection of CRC and investigate the biological pathways prone to DNA methylation. Methods: DNA methylation marker discovery was performed using The Cancer Genome Atlas (TCGA) colon adenocarcinoma data set consisting of normal and primary colon adenocarcinoma tissue. The performance of the five best candidate markers and a previously identified marker, NDRG4, was evaluated on tissues and whole stool samples of healthy subjects and CRC patients using quantitative MSP assays. The results were compared and combined with FIT data. Finally, pathway and gene ontology enrichment analyses were performed using ToppFun, GOrilla and clusterProfiler. Results: GDNF, HAND2, SLC35F3, SNAP91 and SORCS1 were ranked as the best performing markers. Gene combinations of all five markers, NDRG4 and FIT were evaluated to establish the biomarker panel with the highest diagnostic potential, resulting in the identification of GDNF/SNAP91/NDRG4/FIT as the best performing marker panel. Pathway and gene ontology enrichment analyses revealed that genes associated with the nervous system were enriched in the set of best performing CRC-specific biomarkers. Conclusion: In silico discovery analysis using TCGA-derived data yielded a novel DNA-methylation-based assay for the early detection of CRC, potentially improving current screening modalities. Additionally, nervous system-related pathways were enriched in the identified genes, indicating an epigenetic regulation of neuronal genes in CRC

    CHFR Promoter Methylation Indicates Poor Prognosis in Stage II Microsatellite Stable Colorectal Cancer

    Get PDF
    Purpose: Data on the prognostic significance of promoter CpG island methylation in colorectal cancer (CRC) are conflicting, possibly due to associations between methylation and other factors affecting survival such as genetic alterations and use of adjuvant therapy. Here, we examine the prognostic impact of promoter methylation in patients with CRC treated with surgery alone in the context of microsatellite instability (MSI), BRAF and KRAS mutations. Experimental Methods: One hundred and seventy-three CRCs were analyzed for promoter methylation of 19 tumor suppressor andDNArepair genes, the CpGisland methylator phenotype (CIMP), MSI, the exon 15 V600E BRAF mutation and KRAS codon 12 and 13 mutations. Results: Unsupervised hierarchical clustering based on methylation status of 19 genes revealed three subgroups: cluster 1 [CL1, 57% (98/173) of CRCs], cluster 2 [CL2, 25% (43/173) of CRCs], and cluster 3 [CL3, 18% (32/173) of CRCs]. CL3 had the highest methylation index (0.25, 0.49, and 0.69, respectively, P = <0.01) and was strongly associated with CIMP (P < 0.01). Subgroup analysis for tumor stage, MSI, and BRAF status showed no statistically significant differences in survival between CL1, CL2, and CL3 nor between CIMP and non-CIMP CRCs. Analyzing genes separately revealed that CHFR promoter methylation was associated with a poor prognosis in stage II, microsatellite stability (MSS), BRAF wild-type (WT) CRCs: multivariate Cox proportional HR = 3.89 [95% confidence interval (CI), 1.58-9.60, P < 0.01; n = 66] and HR = 2.11 (95% CI, 0.95-4.69, P = 0.068, n = 136) in a second independent population-based study. Conclusions: CHFR promoter CpG island methylation, which is associated with MSI, also occurs frequently in MSS CRCs and is a promising prognostic marker in stage II, MSS, BRAF WT CRCs

    Analysis of DNA methylation in cancer : location revisited

    No full text
    Changes in DNA methylation in cancer have been heralded as promising targets for the development of powerful diagnostic, prognostic, and predictive biomarkers. Despite the existence of more than 14,000 scientific publications describing DNA methylation-based biomarkers and their clinical associations in cancer, only 14 of these biomarkers have been translated into a commercially available clinical test. Methodological and experimental obstacles are both major causes of this disparity, but the genomic location of a DNA methylation-based biomarker is an intrinsic and essential property that also has an important and often overlooked role. Here, we examine the importance of the location of DNA methylation for the development of cancer biomarkers, and take a detailed look at the genomic location and other relevant characteristics of the various biomarkers with commercially available tests. We also emphasize the value of publicly available databases for the development of DNA methylation-based biomarkers and the importance of accurate reporting of the full methodological details of research findings
    corecore