18 research outputs found

    Comparative effectiveness and safety of non-vitamin K antagonists for atrial fibrillation in clinical practice: GLORIA-AF Registry

    Get PDF
    Background and purpose: Prospectively collected data comparing the safety and effectiveness of individual non-vitamin K antagonists (NOACs) are lacking. Our objective was to directly compare the effectiveness and safety of NOACs in patients with newly diagnosed atrial fibrillation (AF). Methods: In GLORIA-AF, a large, prospective, global registry program, consecutive patients with newly diagnosed AF were followed for 3 years. The comparative analyses for (1) dabigatran vs rivaroxaban or apixaban and (2) rivaroxaban vs apixaban were performed on propensity score (PS)-matched patient sets. Proportional hazards regression was used to estimate hazard ratios (HRs) for outcomes of interest. Results: The GLORIA-AF Phase III registry enrolled 21,300 patients between January 2014 and December 2016. Of these, 3839 were prescribed dabigatran, 4015 rivaroxaban and 4505 apixaban, with median ages of 71.0, 71.0, and 73.0 years, respectively. In the PS-matched set, the adjusted HRs and 95% confidence intervals (CIs) for dabigatran vs rivaroxaban were, for stroke: 1.27 (0.79–2.03), major bleeding 0.59 (0.40–0.88), myocardial infarction 0.68 (0.40–1.16), and all-cause death 0.86 (0.67–1.10). For the comparison of dabigatran vs apixaban, in the PS-matched set, the adjusted HRs were, for stroke 1.16 (0.76–1.78), myocardial infarction 0.84 (0.48–1.46), major bleeding 0.98 (0.63–1.52) and all-cause death 1.01 (0.79–1.29). For the comparison of rivaroxaban vs apixaban, in the PS-matched set, the adjusted HRs were, for stroke 0.78 (0.52–1.19), myocardial infarction 0.96 (0.63–1.45), major bleeding 1.54 (1.14–2.08), and all-cause death 0.97 (0.80–1.19). Conclusions: Patients treated with dabigatran had a 41% lower risk of major bleeding compared with rivaroxaban, but similar risks of stroke, MI, and death. Relative to apixaban, patients treated with dabigatran had similar risks of stroke, major bleeding, MI, and death. Rivaroxaban relative to apixaban had increased risk for major bleeding, but similar risks for stroke, MI, and death. Registration: URL: https://www.clinicaltrials.gov. Unique identifiers: NCT01468701, NCT01671007. Date of registration: September 2013

    Comparative effectiveness and safety of non-vitamin K antagonists for atrial fibrillation in clinical practice: GLORIA-AF Registry

    Get PDF

    Anticoagulant selection in relation to the SAMe-TT2R2 score in patients with atrial fibrillation. the GLORIA-AF registry

    Get PDF
    Aim: The SAMe-TT2R2 score helps identify patients with atrial fibrillation (AF) likely to have poor anticoagulation control during anticoagulation with vitamin K antagonists (VKA) and those with scores >2 might be better managed with a target-specific oral anticoagulant (NOAC). We hypothesized that in clinical practice, VKAs may be prescribed less frequently to patients with AF and SAMe-TT2R2 scores >2 than to patients with lower scores. Methods and results: We analyzed the Phase III dataset of the Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation (GLORIA-AF), a large, global, prospective global registry of patients with newly diagnosed AF and ≥1 stroke risk factor. We compared baseline clinical characteristics and antithrombotic prescriptions to determine the probability of the VKA prescription among anticoagulated patients with the baseline SAMe-TT2R2 score >2 and ≤ 2. Among 17,465 anticoagulated patients with AF, 4,828 (27.6%) patients were prescribed VKA and 12,637 (72.4%) patients an NOAC: 11,884 (68.0%) patients had SAMe-TT2R2 scores 0-2 and 5,581 (32.0%) patients had scores >2. The proportion of patients prescribed VKA was 28.0% among patients with SAMe-TT2R2 scores >2 and 27.5% in those with scores ≤2. Conclusions: The lack of a clear association between the SAMe-TT2R2 score and anticoagulant selection may be attributed to the relative efficacy and safety profiles between NOACs and VKAs as well as to the absence of trial evidence that an SAMe-TT2R2-guided strategy for the selection of the type of anticoagulation in NVAF patients has an impact on clinical outcomes of efficacy and safety. The latter hypothesis is currently being tested in a randomized controlled trial. Clinical trial registration: URL: https://www.clinicaltrials.gov//Unique identifier: NCT01937377, NCT01468701, and NCT01671007

    CONGENITAL HEART-DISEASE AND SUDDEN-DEATH IN THE YOUNG

    No full text
    Sudden death is a frequent mode of fatal outcome in cardiac disease and does not exclude young people. The aim of this investigation was to establish whether and to what extent sudden death in the young may be ascribable to the substrate of underlying congenital heart disease. Among 182 young people (< or = 35 years) who died of cardiac sudden death and underwent postmortem examination, 58 (32%) had congenital heart disease. Seven showed an intrapericardial rupture of aortic dissection, in the setting of Marfan syndrome in two, isolated bicuspid aortic valve in two, and bicuspid aortic valve and isthmic coarctation in three; all exhibited equally severe degeneration of the aortic wall. Sixteen cases had conduction system anomalies, mostly bypass tracts; 15 coronary artery anomalies (three ostial valve-like stenosis, five origin from the wrong aortic sinus, and seven deep intramyocardial course); 12 hypertrophic cardiomyopathy; five postoperative congenital heart disease including scar following ventriculotomy, conduction system injury, and defects left unrepaired; and three congenital aortic valve stenosis. One third of sudden deaths in the young was ascribable to structural defects present since birth. A large spectrum of congenital heart disease involves the risk of sudden death, but most structural defects are usually not considered to be life threatening. Some of these concealed defects are potentially detectable in life by clinical imaging techniques

    IDENTIFICATION OF MUTATIONS IN THE CARDIAC RYANODINE RECEPTOR GENE IN FAMILIES AFFECTED WITH ARRHYTHMOGENIC RIGHT VENTRICULAR CARDIOMYOPATHY

    No full text
    Arrhythmogenic right ventricular dysplasia type 2 (ARVD2, OMIM 600996) is an autosomal dominant cardiomyopathy, characterized by partial degeneration of the myocardium of the right ventricle, electrical instability and sudden death. The disease locus was mapped to chromosome 1q42--q43. We report here on the physical mapping of the critical ARVD2 region, exclusion of two candidate genes (actinin 2 and nidogen), elucidation of the genomic structure of the cardiac ryanodine receptor gene (RYR2) and identification of RYR2 mutations in four independent families. In myocardial cells, the RyR2 protein, activated by Ca(2+), induces the release of calcium from the sarcoplasmic reticulum into the cytosol. RyR2 is the cardiac counterpart of RyR1, the skeletal muscle ryanodine receptor, involved in malignant hyperthermia (MH) susceptibility and in central core disease (CCD). The RyR2 mutations detected in the present study occurred in two highly conserved regions, strictly corresponding to those where mutations causing MH or CCD are clustered in the RYR1 gene. The detection of RyR2 mutations causing ARVD2, reported in this paper, opens the way to pre-symptomatic detection of carriers of the disease in childhood, thus enabling early monitoring and treatment

    Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2)

    No full text
    Arrhythmogenic right ventricular dysplasia type 2 (ARVD2, OMIM 600996) is an autosomal dominant cardiomyopathy, characterized by partial degeneration of the myocardium of the right ventricle, electrical instability and sudden death. The disease locus was mapped to chromosome 1q42-q43, We report here on the physical mapping of the critical ARVD2 region, exclusion of two candidate genes (actinin 2 and nidogen), elucidation of the genomic structure of the cardiac ryanodine receptor gene (RYR2) and identification of RYR2 mutations in four independent families. In myocardial cells, the RyR2 protein, activated by Ca2+, induces the release of calcium from the sarcoplasmic reticulum into the cytosol, RyR2 is the cardiac counterpart of RyR1, the skeletal muscle ryanodine receptor, involved in malignant hyperthermia (MH) susceptibility and in central core disease (CCD), The RyR2 mutations detected in the present study occurred in two highly conserved regions, strictly corresponding to those where mutations causing MH or CCD are clustered in the RYR1 gene, The detection of RyR2 mutations causing ARVD2, reported in this paper, opens the way to pre-symptomatic detection of carriers of the disease in childhood, thus enabling early monitoring and treatment

    Ex vivo and in vivo coronary ostial locations in humans

    Full text link
    PURPOSE: Knowledge of the normal in vivo distribution and variation of coronary ostial locations is essential in the planning of various interventional and surgical procedures. However, all studies to date have reported the distribution of coronary ostia locations only in cadaver hearts. In this study, we sought to assess the distribution of coronary ostial locations in patients using cardiac dual-source computed tomography (CT) and compare these values to those of human cadaveric specimens. METHODS: Measurements of the coronary ostia location were performed in 150 patients undergoing dual-source CT and in 75 cadavers using open measurement techniques. All 150 patients had a normal aortic valve function and no previous cardiac intervention or surgery. The location of the right and left coronary origin in relation to the aortic annulus and the height of the sinus of Valsalva were measured. RESULTS: Mean ostial locations at CT were 17.0 (+/-3.6) mm and 15.3 (+/-3.1) mm for the right and left coronary ostia, with large variations of both sides (right: 10.4-28.5 mm; left: 9.8-29.3 mm). In cadavers, mean locations were 14.9 (+/-4.3) mm [5-24 mm] for right and 16.0 (+/-3.6) mm [9-24 mm] for left coronary ostia. Comparison of CT and cadaver data showed statistically significant differences for right (P < 0.0001) but not left (P = 0.1675) coronary ostia. CONCLUSIONS: This study provides data of normal coronary ostial origins and demonstrates significant differences between in vivo and ex vivo measurements regarding the right coronary ostium. The observed large variations of coronary ostia origins emphasize the importance of considering such anatomic variations in the development of treatments
    corecore