8 research outputs found

    Modular Design via Multiple Anion Chemistry of the High Mobility van der Waals Semiconductor Biâ‚„Oâ‚„SeClâ‚‚

    Get PDF
    Making new van der Waals materials with electronic or magnetic functionality is a chemical design challenge for the development of two-dimensional nanoelectronic and energy conversion devices. We present the synthesis and properties of the van der Waals material Bi4O4SeCl2, which is a 1:1 superlattice of the structural units present in the van der Waals insulator BiOCl and the three-dimensionally connected semiconductor Bi2O2Se. The presence of three anions gives the new structure both the bridging selenide anion sites that connect pairs of Bi2O2 layers in Bi2O2Se and the terminal chloride sites that produce the van der Waals gap in BiOCl. This retains the electronic properties of Bi2O2Se while reducing the dimensionality of the bonding network connecting the Bi2O2Se units to allow exfoliation of Bi4O4SeCl2 to 1.4 nm height. The superlattice structure is stabilized by the configurational entropy of anion disorder across the terminal and bridging sites. The reduction in connective dimensionality with retention of electronic functionality stems from the expanded anion compositional diversity

    Chemical Control of Correlated Metals as Transparent Conductors

    No full text
    Correlated metallic transition metal oxides offer a route to thin film transparent conductors that is distinct from the degenerate doping of broadband wide gap semiconductors. In a correlated metal transparent conductor, interelectron repulsion shifts the plasma frequency out of the visible region to enhance optical transmission, while the high carrier density of a metal retains sufficient conductivity. By exploiting control of the filling, position, and width of the bands derived from the B site transition metal in ABO3 perovskite oxide films, it is shown that pulsed laser deposition-grown films of cubic SrMoO3 and orthorhombic CaMoO3 based on the second transition series cation 4d2 Mo4+ have superior transparent conductor properties to those of the first transition series 3d1 V4+-based SrVO3. The increased carrier concentration offered by the greater bandfilling in the molybdates gives higher conductivity while retaining sufficient correlation to keep the plasma edge below the visible region. The reduced binding energy of the n=4 frontier orbitals in the second transition series materials shifts the energies of oxide 2p to metal nd transitions into the near-ultraviolet to enhance visible transparency. The A site size-driven rotation of MoO6 octahedra in CaMoO3 optimizes the balance between plasma frequency and conductivity for transparent conductor performance

    Ge 4s2 lone pairs and band alignments in GeS and GeSe for photovoltaics

    No full text
    The Engineering and Physical Sciences Research Council (EPSRC) is acknowledged for providing funding to M. J. S., J. E. N. S, and T. J. F. (Grant No. EP/L01551X/1), H. S. (Grant No. EP/N509693/1), L. A. H. J. (Grant No. EP/R513271/1), and V. R. D. and T. D. V. (Grant No. EP/N015800/1). JMS is supported by a UK Research and Innovation (UKRI) Future Leaders Fellowship (Grant No. MR/T043121/1), and previously held a University of Manchester Presidential Fellowship. The XRD facility was supported by the EPSRC under Grant No. EP/P001513/1. Diamond Light Source is acknowledged for providing beam time on beamline I09 under proposals SI21431-1 and SI23160-1. Computational modelling was performed on the UK Archer high-performance computing facility via membership of the UK Materials Chemistry Consortium, which is funded by the EPSRC (Grant No. EP/L000202, EP/R029431).Germanium sulfide and germanium selenide bulk crystals were prepared using a melt growth technique. X-ray photoemission spectroscopy (XPS) was used to determine ionisation potentials of 5.74 and 5.48 eV for GeS and GeSe respectively. These values were used with the previously-measured band gaps to establish the natural band alignments with potential window layers for solar cells and to identify CdS and TiO2 as sensible choices. The ionisation potential of GeS is found to be smaller than in comparable materials. Using XPS and hard X-ray photoemission (HAXPES) measurements in conjunction with density-functional theory calculations, we demonstrate that stereochemically active Ge 4s lone pairs are present at the valence-band maxima. Our work thus provides direct evidence for active lone pairs in GeS and GeSe, with important implications for the applications of these and related materials such as Ge-based perovskites.Publisher PDFPeer reviewe

    GeSe: Optical Spectroscopy and Theoretical Study of a van der Waals Solar Absorber

    No full text
    The van der Waals material GeSe is a potential solar absorber, but its optoelectronic properties are not yet fully understood. Here, through a combined theoretical and experimental approach, the optoelectronic and structural properties of GeSe are determined. A fundamental absorption onset of 1.30 eV is found at room temperature, close to the optimum value according to the Shockley–Queisser detailed balance limit, in contrast to previous reports of an indirect fundamental transition of 1.10 eV. The measured absorption spectra and first-principles joint density of states are mutually consistent, both exhibiting an additional distinct onset ∼0.3 eV above the fundamental absorption edge. The band gap values obtained from first-principles calculations converge, as the level of theory and corresponding computational cost increases, to 1.33 eV from the quasiparticle self-consistent GW method, including the solution to the Bethe–Salpeter equation. This agrees with the 0 K value determined from temperature-dependent optical absorption measurements. Relaxed structures based on hybrid functionals reveal a direct fundamental transition in contrast to previous reports. The optoelectronic properties of GeSe are resolved with the system described as a direct semiconductor with a 1.30 eV room temperature band gap. The high level of agreement between experiment and theory encourages the application of this computational methodology to other van der Waals materials

    Band Alignments, Band Gap, Core Levels, and Valence Band States in Cu₃BiS₃ for Photovoltaics

    No full text
    The earth-abundant semiconductor Cu₃BiS₃ (CBS) exhibits promising photovoltaic properties and is often considered analogous to the solar absorbers copper indium gallium diselenide (CIGS) and copper zinc tin sulfide (CZTS) despite few device reports. The extent to which this is justifiable is explored via a thorough X-ray photoemission spectroscopy (XPS) analysis: spanning core levels, ionization potential, work function, surface contamination, cleaning, band alignment, and valence-band density of states. The XPS analysis overcomes and addresses the shortcomings of prior XPS studies of this material. Temperature-dependent absorption spectra determine a 1.2 eV direct band gap at room temperature; the widely reported 1.4–1.5 eV band gap is attributed to weak transitions from the low density of states of the topmost valence band previously being undetected. Density functional theory HSE06 + SOC calculations determine the band structure, optical transitions, and well-fitted absorption and Raman spectra. Valence band XPS spectra and model calculations find the CBS bonding to be superficially similar to CIGS and CZTS, but the Bi^{3+} cations (and formally occupied Bi 6s orbital) have fundamental impacts: giving a low ionization potential (4.98 eV), suggesting that the CdS window layer favored for CIGS and CZTS gives detrimental band alignment and should be rejected in favor of a better aligned material in order for CBS devices to progress

    Influence of Polymorphism on the Electronic Structure of Ga2O3

    Get PDF
    The search for new wide band gap materials is intensifying to satisfy the need for more advanced and energy efficient power electronic devices. Ga2O3 has emerged as an alternative to SiC and GaN, sparking a renewed interest in its fundamental properties beyond the main β-phase. Here, three polymorphs of Ga2O3, α, β and ε, are investigated using X-ray diffraction, X-ray photoelectron and absorption spectroscopy, and ab initio theoretical approaches to gain insights into their structure - electronic structure relationships. Valence and conduction electronic structure as well as semi-core and core states are probed, providing a complete picture of the influence of local coordination environments on the electronic structure. State-of-the-art electronic structure theory, including all-electron density functional theory and many-body perturbation theory, provide detailed understanding of the spectroscopic results. The calculated spectra provide very accurate descriptions of all experimental spectra and additionally illuminate the origin of observed spectral features. This work provides a strong basis for the exploration of the Ga2O3 polymorphs as materials at the heart of future electronic device generations
    corecore