15 research outputs found

    Azulene-A Bright Core for Sensing and Imaging

    Get PDF
    Azulene is a hydrocarbon isomer of naphthalene known for its unusual colour and fluorescence properties. Through the harnessing of these properties, the literature has been enriched with a series of chemical sensors and dosimeters with distinct colorimetric and fluorescence responses. This review focuses specifically on the latter of these phenomena. The review is subdivided into two sections. Section one discusses turn-on fluorescent sensors employing azulene, for which the literature is dominated by examples of the unusual phenomenon of azulene protonation-dependent fluorescence. Section two focuses on fluorescent azulenes that have been used in the context of biological sensing and imaging. To aid the reader, the azulene skeleton is highlighted in blue in each compound.</p

    Fluorescent small organic probes for biosensing

    Get PDF
    Small-molecule based fluorescent probes are increasingly important for the detection and imaging of biological signaling molecules due to their simplicity, high selectivity and sensitivity, whilst being non-invasive, and suitable for real-time analysis of living systems. With this perspective we highlight sensing mechanisms including Förster resonance energy transfer (FRET), intramolecular charge transfer (ICT), photoinduced electron transfer (PeT), excited state intramolecular proton transfer (ESIPT), aggregation induced emission (AIE) and multiple modality fluorescence approaches including dual/triple sensing mechanisms (DSM or TSM). Throughout the perspective we highlight the remaining challenges and suggest potential directions for development towards improved small-molecule fluorescent probes suitable for biosensing

    Persistent azulene α-carbocations:synthesis from aldehydes, spectroscopic and crystallographic properties

    Get PDF
    The non-benzenoid aromatic system azulene is sufficiently nucleophilic at C1 that it can react with a protonated aldehyde to form an α-azulenyl alcohol. This in turn may be protonated and undergo loss of water to give an azulene α-carbocation. We report the isolation of such azulenyl cations as salts with non-coordinating anions. The salts have been characterised by NMR, UV/Vis absorption and (in certain cases) X-ray crystallography. Reduction of representative salts to afford azulenyl(aryl) methylenes has been demonstrated.</p

    Azulene functionalization by iron-mediated addition to a cyclohexadiene scaffold

    Get PDF
    The functionalization of azulenes via reaction with cationic η5-iron carbonyl diene complexes under mild reaction conditions is demonstrated. A range of azulenes, including derivatives of naturally occurring guaiazulene, were investigated in reactions with three electrophilic iron complexes of varying electronic properties, affording the desired coupling products in 43−98% yield. The products were examined with UV− vis/fluorescence spectroscopy and showed interesting halochromic properties. Decomplexation and further derivatization of the products provide access to several different classes of 1-substituted azulenes, including a conjugated ketone and a fused tetracycle

    A Colorimetric Chemosensor Based on a Nozoe Azulene That Detects Fluoride in Aqueous/Alcoholic Media

    Get PDF
    Colorimetry is an advantageous method for detecting fluoride in drinking water in a resource-limited context, e. g., in parts of the developing world where excess fluoride intake leads to harmful health effects. Here we report a selective colorimetric chemosensor for fluoride that employs an azulene as the reporter motif and a pinacolborane as the receptor motif. The chemosensor, NAz-6-Bpin, is prepared using the Nozoe azulene synthesis, which allows for its rapid and low-cost synthesis. The chemosensor gives a visually observable response to fluoride both in pure organic solvent and also in water/alcohol binary solvent mixtures

    Self-assembly and surface behaviour of pure and mixed zwitterionic amphiphiles in a deep eutectic solvent

    Get PDF
    Recent investigations have shown that deep eutectic solvents provide a suitable environment for self-organisation of biomolecules, in particular phospholipids and proteins. However, the solvation of complex lyophilic moieties by deep eutectic solvents still remains unclear. Here we explore the behaviour of zwitterionic surfactants in choline chloride:glycerol eutectic mixture. Dodecyl-2-(trimethylammonio)ethylphosphate and N-alkyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (alkyl = dodecyl, tetradecyl) surfactants were investigated by means of surface tension, X-ray reflectivity and small-angle neutron scattering. These surfactants were found to remain surface active and form globular micelles in deep eutectic solvents. Still, the surface behaviour of these species was found to differ depending on the headgroup and tail structure. The morphology of the micelles also slightly varies between surfactants, demonstrating differences in the packing of individual monomers. The characteristics of mixtures of the dodecyl surfactants is also reported, showing a deviation from ideal mixing associated with attractive interactions between sulfobetaine and phosphocholine headgroups. Such non-ideality results in variation of the surface behaviour and self-assembly of these surfactant mixtures. The results presented here will potentially lead to the development of new alternatives for drug-delivery, protein solubilisation and biosensing through a better fundamental understanding of the behaviour of zwitterionic surfactants in deep eutectic solvents

    Azulene—A Bright Core for Sensing and Imaging

    No full text
    Azulene is a hydrocarbon isomer of naphthalene known for its unusual colour and fluorescence properties. Through the harnessing of these properties, the literature has been enriched with a series of chemical sensors and dosimeters with distinct colorimetric and fluorescence responses. This review focuses specifically on the latter of these phenomena. The review is subdivided into two sections. Section one discusses turn-on fluorescent sensors employing azulene, for which the literature is dominated by examples of the unusual phenomenon of azulene protonation-dependent fluorescence. Section two focuses on fluorescent azulenes that have been used in the context of biological sensing and imaging. To aid the reader, the azulene skeleton is highlighted in blue in each compound
    corecore