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Colorimetry is an advantageous method for detecting fluoride in drinking water in

a resource-limited context, e. g., in parts of the developing world where excess

fluoride intake leads to harmful health effects. Here we report a selective colorimetric

chemosensor for fluoride that employs an azulene as the reporter motif and a

pinacolborane as the receptor motif. The chemosensor, NAz-6-Bpin, is prepared using

the Nozoe azulene synthesis, which allows for its rapid and low-cost synthesis. The

chemosensor gives a visually observable response to fluoride both in pure organic solvent

and also in water/alcohol binary solvent mixtures.

Keywords: azulene, sensor, fluoride, colorimetric, boron, water sensing

INTRODUCTION

Fluoride is present in naturally abundant minerals in the Earth’s crust, and is therefore present in
groundwater throughout the world (Ozsvath, 2009). There is only a narrow range between levels
of fluoride intake that are beneficial and detrimental to human health. Whilst use of fluoridated
toothpaste can help the prevention of tooth decay (Selwitz et al., 2007), exposure to greater
quantities of fluoride can lead to both dental and skeletal fluorosis (DenBesten and Li, 2011; Ghosh
et al., 2013). TheWorld Health Organization (WHO) guidelines suggest that drinking water should
not exceed fluoride concentrations of 1.5mg L−1 (World Health Organization, 2011). For most of
the world, fresh-water fluoride content is below 0.5mg L−1 (World Health Organization, 1994).
However, it is estimated that for over 200 million people their main source of drinking water
exceeds the WHO acceptable limit of fluoride (Amini et al., 2008). Dental fluorosis is prevalent
amongst the populations within areas where fluoride content of water is greater than the WHO
recommended limit (Petersen et al., 2005). High ground-water fluoride content and dental fluorosis
is particularly prevalent in Brazil, China, India, and throughout Africa (Fawell et al., 2006).

Whilst a range of approaches have been developed to remove fluoride from drinking water
(Jagtap et al., 2012), it is necessary to have methods for detecting fluoride concentrations above the
WHO safe limit, in order to know when to deploy fluoride remediation techniques. Accordingly,
the development of molecular sensors for fluoride has seen significant research activity (Cametti
and Rissanen, 2009; Zhou et al., 2014). Methods for chemical detection of fluoride anion may
be subdivided into use of chemosensors (in which fluoride is reversibly bound to a receptor
motif) and chemodosimeters (in which fluoride mediates an irreversible chemical reaction of the
probe molecule). Strategies for chemodosimeter design include formation of an Si-F bond, usually
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GRAPHICAL ABSTRACT | NAz-6-Bpin color change upon binding of fluoride anion.

inducing cleavage of an Si-O or Si-C bond (For a review, see:
Chen et al., 2019. See also: Yamaguchi et al., 2000; Descalzo et al.,
2002; Kim and Swager, 2003; Zhu et al., 2005; Bozdemir et al.,
2010; Hu et al., 2010; Lu et al., 2011; Baker and Phillips, 2012; Li
et al., 2014; Turan and Akkaya, 2014; Zou et al., 2014; Chavali
et al., 2015; Mahapatra et al., 2015; Gabrielli and Mancin, 2016;
Chansaenpak et al., 2018). Strategies for chemosensor design
include coordination of fluoride to trivalent boron (For a review,
see: Wade et al., 2010. See also: Yamaguchi et al., 2001; Sole
and Gabbaï, 2004; Kim and Gabbaï, 2009; Nishimura et al.,
2013; Mellerup et al., 2016; Tao et al., 2019), coordination to
lanthanide complexes (Liu et al., 2014; Butler, 2015; Singhal
and Jha, 2019), and fluoride-induced proton transfer and/or
conformational change (Black et al., 1999; Gunnlaugsson et al.,
2001, 2004, 2005; Sessler et al., 2002; Peng et al., 2005; Salman
et al., 2005; Mahapatra et al., 2015).

Molecular probes for fluoride may have reporter motifs that
give rise to a fluorescence, chemiluminescence, electrochemical
or colorimetric response, for example. Of these, colorimetric
probes for fluoride have significant advantages in the context
of fluoride detection in drinking water in developing nations.
They have the potential to be easy to transport and mass
produce, and tests can be performed by non-expert users, without
any requirement for a laboratory environment, expensive
equipment or a power supply. Indeed, observing a color
change does not require the user to be literate. However, such
colorimetric probes are not without disadvantages. Fluoride
has proven difficult to detect in water, primarily due to the
extensive solvent cluster of water around fluoride (Cabarcos
et al., 1999; Zhan and Dixon, 2004), with which a sensor
would have to compete. In such instances, surfactants such as
cetyltrimethylammonium bromide (CTAB) have sometimes been
employed to dissolve the sensor in a micellular environment
(Hu et al., 2010; Calderon-Ortiz et al., 2012; Elsayed et al.,
2013; Roy et al., 2015; Wang et al., 2015; Qiu et al., 2016;
Wallabregue et al., 2016). Phase-transfer catalysts such as
tetra-n-butylammonium hydrogensulfate (TBAS) can be used
in tandem to aid transport of the analyte into the micelle
(Lopez-Alled et al., 2017).

Azulene, an isomer of naphthalene, consists of fused 7- and
5-membered ring systems. It is both unusually polar and colorful
(blue) for an aromatic hydrocarbon (Michl and Thulstrup, 1976).
The color of azulene can be tuned in a predictable fashion by
altering the substituents at different positions on the azulene core
(Liu and Asato, 2003). This fact has been exploited for its use in a
range of colorimetric sensors. Examples include sensors for silver

(Wakabayashi et al., 2013), nitrite (Murfin et al., 2020), mercury
(Wakabayashi et al., 2007, 2008, 2012; Razus et al., 2011; Birzan
et al., 2017; Buica et al., 2018, 2019), phosphate (Lichosyt et al.,
2016, 2018), and reactive oxygen species (Murfin et al., 2019).

We have previously described the colorimetric azulene-based
fluoride sensor Az-1-Bpin which exhibited excellent selectivity
toward fluoride in THF (Lopez-Alled et al., 2017), with a notable
color change from purple to yellow (Figure 1). The sensor did
not respond to fluoride in any water/organic mixed solvent
system. However, a response of Az-1-Bpin to fluoride in water
was achieved in the presence of surfactants CTAB and TBAS, for
which a color change from purple to purple-blue was observed.
Subsequent to our work, further reports on boron-containing
azulenes that respond colorimetrically to fluoride anion have
been published, describing a variant of Az-1-Bpin for which a
dimeric structure was claimed (Fang et al., 2018), and describing
annulated borazaazulenes (Xin et al., 2020).

RESULTS AND DISCUSSION

The synthesis of Az-1-Bpin employs an iridium-catalyzed C-
H borylation reaction (Kurotobi et al., 2003), wherein the
catalyst comprises an expensive and depleting platinum group
metal. Although an alternative synthesis was later reported
(Bagutski et al., 2013), both syntheses require azulene itself
as a starting material, which is also costly. In order to
produce an azulene-based fluoride chemodosimeter that did not
require azulene as a starting material, we instead considered
the classical Nozoe azulene synthesis. Azulenes bearing ester
substituents at the 1- and 3-positions can be readily accessed
using this methodology, which employs tropolone as the starting
material (Nozoe et al., 1962). We opted to employ the proven
pinacolboron group as the receptor motif, but appended to
the seven-membered ring of azulene (as opposed to the five-
membered ring as in Az-1-Bpin). We synthesized and assessed
several variants based on this design strategy, and it was found
that diethyl 2-chloro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-
2-yl)azulene-1,3-dicarboxylate (which we have termed “NAz-
6-Bpin”) gave the most substantial color change in response
to fluoride.

Similarly to the case of Az-1-Bpin, our expectation was that
upon fluoride binding to NAz-6-Bpin, the conjugation between
the azulene ring and vacant p-orbital on the sp2-hybridized boron
atomwould be abolished since the boron would necessarily adopt
sp3 hybridization. This in turn would significantly perturb the
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π-system and resulting in the hoped-for colorimetric response
(Figure 2).

NAz-6-Bpin has previously been synthesized (for a purpose
other than chemical sensing) through use of isoamyl nitrite and
HCl gas (Xin et al., 2016). We found we could avoid the use of
HCl gas by adopting a more recent procedure from the same
group, using Me3SiCl in its place (Xin et al., 2018). Using this
method, NAz-6-Bpin was synthesized from precursor 1 in a yield
of 96 % (Figure 3).

To assess the suitability of NAz-6-Bpin to detect fluoride,
initial studies were performed in THF. We compared the
selectivity of NAz-6-Bpin toward fluoride over other halide
anions. As the experiments were performed in organic solvent,
halides were added as their tetra-n-butyl ammonium salts
(TBAX, where X= F, Cl, Br, I). An instant color change from pink
to yellow was observed with TBAF only (Figure 4), and the UV-
vis absorbance spectra were collected in each case (Figure S1).
The absorption maximum underwent a hypsochromic shift from
λmax = 523 nm (NAz-6-Bpin), to λmax = 464 nm (NAz-6-Bpin

FIGURE 1 | A comparison of Az-1-Bpin and NAz-6-Bpin (this work).

FIGURE 2 | Binding of fluoride to the vacant p-orbital on the boronic ester

results in rehybridization from sp2 to sp3.

+ F−). The 11B NMR spectra of NAz-6-Bpin and NAz-6-Bpin
+ TBAF in THF show two resonances, at δ = 28 and 4 ppm,
respectively (Figure S2). The latter upfield shift is characteristic
of a tetracoordinate boronate complex (Wrackmeyer, 2008),
supporting the hypothesis presented in Figure 2.

NAz-6-Bpin was then titrated against TBAF in THF
(Figure 5), for which an isosbestic point at 507 nm was observed.
The absorbance at 464 nm did not increase beyond the addition
of 1 equivalent of TBAF, and the variation of observed absorbance
at 464 nm with equivalents of TBAF shows a good linear
correlation in the region from 0 to 1.0 equivalents (r2 = 0.992,
Figure S3). Furthermore, a Job Plot of the interaction of NAz-6-
Bpin and TBAF indicates a 1:1 stoichiometry of fluoride binding
(Figure S4). With TBAF in THF, the limit of detection is 1.68mg
L−1 (Figure S5).

The ability of NAz-6-Bpin to detect fluoride in water/organic
solvent mixtures was then evaluated. Exploratory experiments
used a 1:1 mixture of water/organic solvent and an excess of
NaF (10 equivalents), with THF, MeCN, EtOH, andMeOH being
assessed (Figure 6). A mixed solvent system of DMSO/water
caused NAz-6-Bpin to precipitate upon mixing. The most
noticeable color change was observed in the MeOH/water
system, with no further changes after 5min. Complete UV-vis
data were collected (Figure S6).

Whilst the methanol/water solvent system gave the most
pronounced color change, further experiments were conducted
on the EtOH/water system. It was reasoned that for the testing
of fluoride by non-experts in the field, use of an ethanol-
based system would prove more advantageous. Ethanol is
appreciably less toxic than methanol, widely available, and low
cost. The solvent ratio was explored and the optimum ratio
was found to be 3:7 EtOH/H2O. However, the assay is robust
with regard to the precise solvent ratio, with obvious color
changes observed with ethanol proportions between 10 and
90% (Figure S7).

The optimized system was then titrated with increasing

concentrations of fluoride (Figure 7). An obvious color change

was observed from red-pink to yellow-orange after 10–20

equivalents of NaF were added. Increased equivalents of
NaF were used to determine the maximum UV-vis response
(Figure S8). The requirement for an excess of fluoride to induce
the maximal spectroscopic response is likely due to the extensive
solvation shell of the fluoride anion in water and competition
with hydroxide for binding to boron. Fitting of the data in
Figure S8 to a Langmuir isotherm allowed the association

FIGURE 3 | Synthesis of NAz-6-Bpin.
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constant to be determined as KA = 214 M−1 at [NAz-6-Bpin]
= 0.5mM (Figure S9). The absorption maximum underwent
a hypsochromic shift from λmax = 486 nm (NAz-6-Bpin), to
λmax = 462 nm (NAz-6-Bpin + F−) and an isosbestic point at
502 nm was observed. NAz-6-Bpin was able to detect fluoride at
neutral and basic pH levels (Figure S10). Acidic pH levels were
avoided to prevent the generation of HF. Without the presence
of fluoride, the sensor was stable and did not trigger a false
response between pH 3–9. At pH 10, without the presence of
NaF a minor color change was observed (Figure S11). NAz-6-
Bpin was also assessed in a mixed ethanol: phosphate-buffered
saline (PBS) solution, 3:7, v/v. It was found that the sensor
changed color without the presence of fluoride, likely due to
the coordination of the phosphate anion to the vacant p-
orbital on the boronic ester (Figure S12). The pH stability of

FIGURE 4 | Visual selectivity test of NAz-6-Bpin in THF (0.5mM) and halide

analyte, 1:1. From left to right: no analyte, TBAF, TBACl, TBABr, TBAI. Photo

taken immediately after addition of TBAX salt.

NAz-6-Bpin consequently means that a buffer is unnecessary.
This is advantageous in the context of NAz-6-Bpin being
used by non-expert users without access to such chemicals as
buffer salts.

A range of anions commonly found in drinking water
were also assessed in the 3:7 EtOH/water solvent system
(Figure 8), for which the distinct red-pink to yellow-orange
color change occurred only for NaF. A small (∼6 nm) shift
of the absorption maximum for Na2SO4 was observed in the
UV-vis absorbance spectra (Figure S13) but this is difficult
to see with the naked eye. Finally, the UV-vis limit of
detection of NAz-6-Bpin and NaF in the 3:7, EtOH/water,
v/v system was found to be 5.75mg L−1 (Figure S14).
Visually, the limit of detection was found to be 10mg L−1

(Figure S15).

CONCLUSION

We have designed, synthesized and evaluated an azulene-
based colorimetric fluoride sensor, NAz-6-Bpin, that can
successfully detect fluoride in water over other halides
and common anions. The sensor has an advantage over
our previously published probe Az-1-Bpin, as it is able to
function in a mixed water-ethanol solvent system, without
the need for any surfactant. The binary solvent system of
ethanol and water used in this system renders it potentially
applicable for the detection of fluoride in drinking water in
the field.

FIGURE 5 | (Top) UV-vis titration of NAz-6-Bpin in THF (0.5mM) with TBAF. (Bottom) Titration image of NAz-6-Bpin in THF (0.5mM) with TBAF as a solution in THF.

Equivalents of TBAF increase from left to right by 0.1 equivalents, starting at 0 equivalents and reaching 1.4 equivalents.
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FIGURE 6 | Visible assessment of color change from 1:1, v/v,

aqueous/organic mixtures of NAz-6-Bpin (0.5mM) and NaF (10 eq.). From left

to right: THF, MeCN, EtOH, MeOH. Incubation time 5min.

FIGURE 7 | UV-vis titration of NAz-6-Bpin in EtOH/H2O, 3:7, v/v (0.5mM) with

NaF. Each sample was incubated for 30min prior to acquisition of spectra.

FIGURE 8 | Visual selectivity test of NAz-6-Bpin in EtOH/H2O, 3:7, v/v

(0.5mM), with 60 equivalents of analyte used. From left to right: no analyte,

NaF, NaCl, NaBr, NaI, NaNO3, NH4Cl, and Na2SO4. Each sample was

incubated for 30min prior to acquisition of spectra.

METHODS

Synthesis of NAz-6-Bpin
Under atmospheric conditions, isoamyl nitrite (0.81mL, 6.05
mmol, 5.0 eqv) and chlorotrimethylsilane (0.78mL, 6.05 mmol,
5.0 eqv) were dissolved in CH2Cl2 (20mL) and left to
stir for 15min, affording a pale-yellow solution. Diethyl 2-
aminoazulene-1,3-dicarboxylate 1 (0.50 g, 1.21 mmol, 1.0 eqv)

was added to the solution as a single portion, causing the
mixture to immediately turn dark brown and bubble rapidly,
before acquiring a dark purple color over a period of 1 h. The
reaction was left to stir at room temperature for 13 h, after
which the volatiles were removed in vacuo. The crude product
was purified by flushing through a silica plug, from a which
a single purple band was eluted with EtOAc/Petrol (1:4) to
give diethyl 2-chloro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-
2-yl)azulene-1,3-dicarboxylate (NAz-6-Bpin, 0.50 g, 96%) as a
purple solid. δH (500 MHz, CDCl3) 9.54–9.42 (2H, m, H4,
H8), 8.28–8.18 (2H, m, H5, H7), 4.49 (4H, q, J 7.1Hz, CH2),
1.47 (6H, t, J 7.1Hz, CH2CH3), 1.40 (12H, s, C(CH3)2).
δC (125 MHz, CDCl3) 164.4 (C=O), 145.0 (C2), 142.9 (C3a,
C8a), 137.04 (C4, C8), 136.99 (C5, C7), 115.3 (C1, C3), 85.3
(C(CH3)2), 60.8 (CH2), 25.1 (C(CH3)2), 14.6 (CH2CH3). The
resonance for C6 was not observed. HRMS (ESI+) m/z
calcd for (C22H26BO6Cl+Na)+, 455.1407; found 455.1437.
Analytical data in agreement with those previously reported
(Xin et al., 2016).

For the complete synthesis and analysis
of NAz-6-Bpin, please see the corresponding
Supplementary Material.
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