1,828 research outputs found

    Shuttle Electrical Power Analysis Program (SEPAP); single string circuit analysis report

    Get PDF
    An evaluation is reported of the data obtained from an analysis of the distribution network characteristics of the shuttle during a spacelab mission. A description of the approach utilized in the development of the computer program and data base is provided and conclusions are drawn from the analysis of the data. Data sheets are provided for information to support the detailed discussion on each computer run

    Avionics test bed development plan

    Get PDF
    The plan is for a facility for the early investigation and evaluation of new concepts for the control of large space structures, orbiter attached flex body experiments, and orbiter enhancements. This plan outlines a distributed data processing facility that will utilize the current JSC laboratory resources for the test bed development. The future studies required for implementation, the management system for project control, and the baseline system configuration are described

    Avionics test bed development plan

    Get PDF
    A development plan for a proposed avionics test bed facility for the early investigation and evaluation of new concepts for the control of large space structures, orbiter attached flex body experiments, and orbiter enhancements is presented. A distributed data processing facility that utilizes the current laboratory resources for the test bed development is outlined. Future studies required for implementation, the management system for project control, and the baseline system configuration are defined. A background analysis of the specific hardware system for the preliminary baseline avionics test bed system is included

    Evolutionary Dynamics While Trapped in Resonance: A Keplerian Binary System Perturbed by Gravitational Radiation

    Get PDF
    The method of averaging is used to investigate the phenomenon of capture into resonance for a model that describes a Keplerian binary system influenced by radiation damping and external normally incident periodic gravitational radiation. The dynamical evolution of the binary orbit while trapped in resonance is elucidated using the second order partially averaged system. This method provides a theoretical framework that can be used to explain the main evolutionary dynamics of a physical system that has been trapped in resonance.Comment: REVTEX Style, Submitte

    Nuclear medium modifications of the NN interaction via quasielastic (p⃗,p⃗′\vec p,\vec p ') and (p⃗,n⃗\vec{p},\vec{n}) scattering

    Full text link
    Within the relativistic PWIA, spin observables have been recalculated for quasielastic (p⃗,p⃗′\vec p,\vec p ') and (p⃗,n⃗\vec p,\vec n) reactions on a 40^{40}Ca target. The incident proton energy ranges from 135 to 300 MeV while the transferred momentum is kept fixed at 1.97 fm^{-1}. In the present calculations, new Horowitz-Love--Franey relativistic NN amplitudes have been generated in order to yield improved and more quantitative spin observable values than before. The sensitivities of the various spin observables to the NN interaction parameters, such as (1) the presence of the surrounding nuclear medium, (2) a pseudoscalar versus a pseudovector interaction term, and (3) exchange effects, point to spin observables which should preferably be measured at certain laboratory proton energies, in order to test current nuclear models. This study also shows that nuclear medium effects become more important at lower proton energies (≤\leq 200 MeV). A comparison to the limited available data indicates that the relativistic parametrization of the NN scattering amplitudes in terms of only the five Fermi invariants (the SVPAT form) is questionable.Comment: 10 pages, 6 Postscript figures, uses psfig.sty and article.sty, submitted to Phys. Rev.

    Ultra-short pulses in linear and nonlinear media

    Get PDF
    We consider the evolution of ultra-short optical pulses in linear and nonlinear media. For the linear case, we first show that the initial-boundary value problem for Maxwell's equations in which a pulse is injected into a quiescent medium at the left endpoint can be approximated by a linear wave equation which can then be further reduced to the linear short-pulse equation. A rigorous proof is given that the solution of the short pulse equation stays close to the solutions of the original wave equation over the time scales expected from the multiple scales derivation of the short pulse equation. For the nonlinear case we compare the predictions of the traditional nonlinear Schr\"odinger equation (NLSE) approximation which those of the short pulse equation (SPE). We show that both equations can be derived from Maxwell's equations using the renormalization group method, thus bringing out the contrasting scales. The numerical comparison of both equations to Maxwell's equations shows clearly that as the pulse length shortens, the NLSE approximation becomes steadily less accurate while the short pulse equation provides a better and better approximation

    Momentum-Dependent Mean Field Based Upon the Dirac-Brueckner Approach for Nuclear Matter

    Full text link
    A momentum-dependent mean field potential, suitable for application in the transport-model description of nucleus-nucleus collisions, is derived in a microscopic way. The derivation is based upon the Bonn meson-exchange model for the nucleon-nucleon interaction and the Dirac-Brueckner approach for nuclear matter. The properties of the microscopic mean field are examined and compared with phenomenological parametrizations which are commonly used in transport-model calculations.Comment: 15 pages text (RevTex) and 4 figures (postscript in a separate uuencoded file), UI-NTH-930
    • …
    corecore