86 research outputs found

    Genome-Wide Scan Identifies Loci Associated with Classical BSE Occurrence

    Get PDF
    Classical bovine spongiform encephalopathy (BSE) is an acquired prion disease that is invariably fatal in cattle and has been implicated as a significant human health risk. Sequence variations in the coding region of the prion gene (PRNP) have been associated with acquired transmissible spongiform encephalopathy (TSE) susceptibility in mammals; however, this is not the case in cattle. It has been hypothesized that genes, in addition to the prion gene, contribute to genetic susceptibility of acquired TSEs. Accordingly, genetic studies of classical BSE in cattle identified loci other than PRNP that are associated with disease incidence. The objective of this study was to utilize a genome-wide association study to test for genetic loci associated with classical BSE. The samples include 143 BSE affected (case) and 173 unaffected half sib (control) animals collected in the mid 1990s in Southern England. The data analysis identifies loci on two different chromosomes associated with BSE disease occurrence. Most notable is a single nucleotide polymorphism on chromosome 1 at 29.15 Mb that is associated with BSE disease (p = 3.09E-05). Additionally, a locus on chromosome 14, within a cluster of SNPs showed a trend toward significance (p = 5.24E-05). It is worth noting that in a human vCJD study markers on human chromosome 8, a region with shared synteny to the region identified on cattle chromosome 14, were associated with disease. Further, our candidate genes appear to have plausible biological relevance with the known etiology of TSE disease. One of the candidate genes is hypothetical gene LOC521010, similar to FK506 binding protein 2 located on chromosome 1 at 29.32 Mb. This gene encodes a protein that is a member of the immunophilin protein family and is involved in basic cellular processes including protein folding. The chromosomal regions identified in this study and candidate genes within these regions merit further investigation

    A high resolution radiation hybrid map of bovine chromosome 14 identifies scaffold rearrangement in the latest bovine assembly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Radiation hybrid (RH) maps are considered to be a tool of choice for fine mapping closely linked loci, considering that the resolution of linkage maps is determined by the number of informative meiosis and recombination events which may require very large mapping populations. Accurately defining the marker order on chromosomes is crucial for correct identification of quantitative trait loci (QTL), haplotype map construction and refinement of candidate gene searches.</p> <p>Results</p> <p>A 12 k Radiation hybrid map of bovine chromosome 14 was constructed using 843 single nucleotide polymorphism markers. The resulting map was aligned with the latest version of the bovine assembly (Btau_3.1) as well as other previously published RH maps. The resulting map identified distinct regions on Bovine chromosome 14 where discrepancies between this RH map and the bovine assembly occur. A major region of discrepancy was found near the centromere involving the arrangement and order of the scaffolds from the assembly. The map further confirms previously published conserved synteny blocks with human chromosome 8. As well, it identifies an extra breakpoint and conserved synteny block previously undetected due to lower marker density. This conserved synteny block is in a region where markers between the RH map presented here and the latest sequence assembly are in very good agreement.</p> <p>Conclusion</p> <p>The increase of publicly available markers shifts the rate limiting step from marker discovery to the correct identification of their order for further use by the research community. This high resolution map of bovine chromosome 14 will facilitate identification of regions in the sequence assembly where additional information is required to resolve marker ordering.</p

    A high resolution radiation hybrid map of bovine chromosome 14 identifies scaffold rearrangement in the latest bovine assembly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Radiation hybrid (RH) maps are considered to be a tool of choice for fine mapping closely linked loci, considering that the resolution of linkage maps is determined by the number of informative meiosis and recombination events which may require very large mapping populations. Accurately defining the marker order on chromosomes is crucial for correct identification of quantitative trait loci (QTL), haplotype map construction and refinement of candidate gene searches.</p> <p>Results</p> <p>A 12 k Radiation hybrid map of bovine chromosome 14 was constructed using 843 single nucleotide polymorphism markers. The resulting map was aligned with the latest version of the bovine assembly (Btau_3.1) as well as other previously published RH maps. The resulting map identified distinct regions on Bovine chromosome 14 where discrepancies between this RH map and the bovine assembly occur. A major region of discrepancy was found near the centromere involving the arrangement and order of the scaffolds from the assembly. The map further confirms previously published conserved synteny blocks with human chromosome 8. As well, it identifies an extra breakpoint and conserved synteny block previously undetected due to lower marker density. This conserved synteny block is in a region where markers between the RH map presented here and the latest sequence assembly are in very good agreement.</p> <p>Conclusion</p> <p>The increase of publicly available markers shifts the rate limiting step from marker discovery to the correct identification of their order for further use by the research community. This high resolution map of bovine chromosome 14 will facilitate identification of regions in the sequence assembly where additional information is required to resolve marker ordering.</p

    High resolution radiation hybrid maps of bovine chromosomes 19 and 29: comparison with the bovine genome sequence assembly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High resolution radiation hybrid (RH) maps can facilitate genome sequence assembly by correctly ordering genes and genetic markers along chromosomes. The objective of the present study was to generate high resolution RH maps of bovine chromosomes 19 (BTA19) and 29 (BTA29), and compare them with the current 7.1X bovine genome sequence assembly (bovine build 3.1). We have chosen BTA19 and 29 as candidate chromosomes for mapping, since many Quantitative Trait Loci (QTL) for the traits of carcass merit and residual feed intake have been identified on these chromosomes.</p> <p>Results</p> <p>We have constructed high resolution maps of BTA19 and BTA29 consisting of 555 and 253 Single Nucleotide Polymorphism (SNP) markers respectively using a 12,000 rad whole genome RH panel. With these markers, the RH map of BTA19 and BTA29 extended to 4591.4 cR and 2884.1 cR in length respectively. When aligned with the current bovine build 3.1, the order of markers on the RH map for BTA19 and 29 showed inconsistencies with respect to the genome assembly. Maps of both the chromosomes show that there is a significant internal rearrangement of the markers involving displacement, inversion and flips within the scaffolds with some scaffolds being misplaced in the genome assembly. We also constructed cattle-human comparative maps of these chromosomes which showed an overall agreement with the comparative maps published previously. However, minor discrepancies in the orientation of few homologous synteny blocks were observed.</p> <p>Conclusion</p> <p>The high resolution maps of BTA19 (average 1 locus/139 kb) and BTA29 (average 1 locus/208 kb) presented in this study suggest that by the incorporation of RH mapping information, the current bovine genome sequence assembly can be significantly improved. Furthermore, these maps can serve as a potential resource for fine mapping QTL and identification of causative mutations underlying QTL for economically important traits.</p

    A 2cM genome-wide scan of European Holstein cattle affected by classical BSE

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Classical bovine spongiform encephalopathy (BSE) is an acquired prion disease that is invariably fatal in cattle and has been implicated as a significant human health risk. Polymorphisms that alter the prion protein of sheep or humans have been associated with variations in transmissible spongiform encephalopathy susceptibility or resistance. In contrast, there is no strong evidence that non-synonymous mutations in the bovine prion gene (<it>PRNP</it>) are associated with classical BSE disease susceptibility. However, two bovine <it>PRNP </it>insertion/deletion polymorphisms, one within the promoter region and the other in intron 1, have been associated with susceptibility to classical BSE. These associations do not explain the full extent of BSE susceptibility, and loci outside of <it>PRNP </it>appear to be associated with disease incidence in some cattle populations. To test for associations with BSE susceptibility, we conducted a genome wide scan using a panel of 3,072 single nucleotide polymorphism (SNP) markers on 814 animals representing cases and control Holstein cattle from the United Kingdom BSE epidemic.</p> <p>Results</p> <p>Two sets of BSE affected Holstein cattle were analyzed in this study, one set with known family relationships and the second set of paired cases with controls. The family set comprises half-sibling progeny from six sires. The progeny from four of these sires had previously been scanned with microsatellite markers. The results obtained from the current analysis of the family set yielded both some supporting and new results compared with those obtained in the earlier study. The results revealed 27 SNPs representing 18 chromosomes associated with incidence of BSE disease. These results confirm a region previously reported on chromosome 20, and identify additional regions on chromosomes 2, 14, 16, 21 and 28. This study did not identify a significant association near the <it>PRNP </it>in the family sample set. The only association found in the <it>PRNP </it>region was in the case-control sample set and this was not significant after multiple test correction. The genome scan of the case-control animals did not identify any associations that passed a stringent genome-wide significance threshold.</p> <p>Conclusions</p> <p>Several regions of the genome are statistically associated with the incidence of classical BSE in European Holstein cattle. Further investigation of loci on chromosomes 2, 14, 16, 20, 21 and 28 will be required to uncover any biological significance underlying these marker associations.</p

    The Agricultural Genome to Phenome Initiative (AG2PI): creating a shared vision across crop and livestock research communities

    Get PDF
    Predicting phenotype from genotype is a central challenge in biology. By understanding genomic information to predict and improve traits, scientists can address the challenges and opportunities of achieving sustainable genetic improvement of complex, economically important traits in agriculturally relevant species. Converting the enormous, recent technical advances in all areas of genomics and phenomics into sustained and ecologically responsible improvements in food and fuel production is complex. It will require engaging agricultural genome to phenome (G2P) experts, drawing from a broad community, including crop and livestock scientists and essential integrative disciplines (e.g., engineers, economists, data and social scientists). To achieve this vision, the USDA NIFA-funded project inaugurating the Agricultural Genome to Phenome Initiative (AG2PI) is working to: Develop a cohesive vision for agricultural G2P research by identifying research gaps and opportunities; advancing community solutions to these challenges and gaps; and rapidly disseminating findings to the broader community. Towards these ends, this AG2PI project is organizing virtual field days, conferences, training workshops, and awarding seed grants to conceive new insights (details at www.ag2pi.org). Since October 2020, more than 10,000 unique participants from every inhabited continent have engaged in these activities. To illustrate AG2PI’s scope, we present survey results on agricultural G2P research needs and opportunities, highlighting opinions and suggestions for the future. We invite stakeholders interested in this complex but critical effort to help create an optimal, sustainable food supply for society and challenge the community to add to our vision for future accomplishments by a fully actualized AG2PI enterprise

    Genetic association of wool quality characteristics in United States Rambouillet sheep

    Get PDF
    Introduction: Fine wool production is an important source of revenue, accounting for up to 13% of total revenue in extensively managed wool sheep production systems of the United States. The Rambouillet are a predominant breed that excels in wool quality characteristics. Understanding the genetic basis of wool quality characteristics would aid in the development of genomic breeding strategies to facilitate genetic improvement.Methods: Wool characteristics and DNA were collected for rams enrolled in the North Dakota State University and University of Wyoming annual central performance ram tests over a three-year period (2019–2021, N = 313). The relationships of wool quality characteristics including grease fleece weight adjusted 365 days (wt. 365 adj.), clean fleece wt. 365 adj., staple length 365 adj., average fiber diameter, face wool cover, amount of skin wrinkles and belly wool were evaluated through genome-wide association studies (GWAS), Pearson correlation and ANOVA.Results: The GWAS identified four genome-wide significant genetic markers (p-value &lt;1.19e-06) and five chromosome-wide significant markers (p-value &lt;1.13e-05) on chromosomes 1, 2, 4, 15, and 19. Significant markers were associated with genes notable for relevant wool biological functions, including the gene ABCC8 which codes for SUR1, an ATP-sensitive potassium channel known to affect hair growth and 60S ribosomal protein L17-like, previously found to be expressed during follicle formation. The strongest Pearson correlation coefficients were identified between clean fleece wt. 365 adj. and grease fleece wt. 365 adj. (r = 0.83) and between clean fleece wt. 365 adj. and staple length 365 adj. (r = 0.53). Additionally, clean fleece wt. 365 adj. was correlated with final body weight (r = 0.35) and scrotal circumference (r = 0.16). Staple length 365 adj. (p-value = 5e-04), average fiber diameter (p-value = .0053) and clean fleece wt. 365 adj. (p-value = .014) were significantly associated with belly wool score.Discussion: The results of this study provide important insight into the relationships between wool quality characteristics and report specific markers that Rambouillet sheep producers may use to help inform selection and breeding decisions for improved wool quality

    Variants Within Genes \u3ci\u3eEDIL3\u3c/i\u3e and \u3ci\u3eADGRB3\u3c/i\u3e are Associated With Divergent Fecal Egg Counts in Katahdin Sheep at Weaning

    Get PDF
    Gastrointestinal nematodes (GIN) pose a severe threat to sheep production worldwide. Anthelmintic drug resistance coupled with growing concern regarding potential environmental effects of drug use have demonstrated the necessity of implementing other methods of GIN control. The aim of this study was to test for genetic variants associated with resistance or susceptibility to GIN in Katahdin sheep to improve the current understanding of the genetic mechanisms responsible for host response to GIN. Linear regression and casecontrol genome-wide association studies were conducted with high-density genotype data and cube-root transformed weaning fecal egg counts (tFEC) of 583 Katahdin sheep. The casecontrol GWAS identified two significant SNPs (P-values 1.49e-08 to 1.01e-08) within introns of the gene adhesion G protein-coupled receptor B3 (ADGRB3) associated with lower fecal egg counts. With linear regression, four significant SNPs (P-values 7.82e-08 to 3.34e-08) were identified within the first intron of the gene EGF-like repeats and discoidin domains 3 (EDIL3). These identified SNPs were in very high linkage disequilibrium (r2 of 0.996–1), and animals with alternate homozygous genotypes had significantly higher median weaning tFEC phenotypes compared to all other genotypes. Significant SNPs were queried through public databases to identify putative transcription factor binding site (TFBS) and potential lncRNA differences between reference and alternate alleles. Changes in TFBS were predicted at two SNPs, and one significant SNPwas found to bewithin a predicted lncRNA sequencewith greater than 90% similarity to a known lncRNA in the bovine genome. The gene EDIL3 has been described in other species for its roles in the inhibition and resolution of inflammation. Potential changes of EDIL3 expression mediated through lncRNA expression and/or transcription factor binding may impact the overall immune response and reduce the ability of Katahdin sheep to control GIN infection. This study lays the foundation for further research of EDIL3 and ADGRB3 towards understanding genetic mechanisms of susceptibility to GIN, and suggests these SNPs may contribute to genetic strategies for improving parasite resistance traits in sheep

    An improved ovine reference genome assembly to facilitate in depth functional annotation of the sheep genome

    Get PDF
    BACKGROUND: The domestic sheep (Ovis aries) is an important agricultural species raised for meat, wool, and milk across the world. A high-quality reference genome for this species enhances the ability to discover genetic mechanisms influencing biological traits. Furthermore, a high-quality reference genome allows for precise functional annotation of gene regulatory elements. The rapid advances in genome assembly algorithms and emergence of sequencing technologies with increasingly long reads provide the opportunity for an improved de novo assembly of the sheep reference genome. FINDINGS: Short-read Illumina (55× coverage), long-read Pacific Biosciences (75× coverage), and Hi-C data from this ewe retrieved from public databases were combined with an additional 50× coverage of Oxford Nanopore data and assembled with canu v1.9. The assembled contigs were scaffolded using Hi-C data with Salsa v2.2, gaps filled with PBsuitev15.8.24, and polished with Nanopolish v0.12.5. After duplicate contig removal with PurgeDups v1.0.1, chromosomes were oriented and polished with 2 rounds of a pipeline that consisted of freebayes v1.3.1 to call variants, Merfin to validate them, and BCFtools to generate the consensus fasta. The ARS-UI_Ramb_v2.0 assembly is 2.63 Gb in length and has improved continuity (contig NG50 of 43.18 Mb), with a 19- and 38-fold decrease in the number of scaffolds compared with Oar_rambouillet_v1.0 and Oar_v4.0. ARS-UI_Ramb_v2.0 has greater per-base accuracy and fewer insertions and deletions identified from mapped RNA sequence than previous assemblies. CONCLUSIONS: The ARS-UI_Ramb_v2.0 assembly is a substantial improvement in contiguity that will optimize the functional annotation of the sheep genome and facilitate improved mapping accuracy of genetic variant and expression data for traits in sheep
    corecore