10 research outputs found

    Chlorhexidine-induced elastic and adhesive changes of Escherichia coli cells within a biofilm

    Get PDF
    Chlorhexidine is a widely used, commercially available cationic antiseptic. Although its mechanism of action on planktonic bacteria has been well explored, far fewer studies have examined its interaction with an established biofilm. The physical effects of chlorhexidine on a biofilm are particularly unknown. Here, the authors report the first observations of chlorhexidine-induced elastic and adhesive changes to single cells within a biofilm. The elastic changes are consistent with the proposed mechanism of action of chlorhexidine. Atomic force microscopy and force spectroscopy techniques were used to determine spring constants and adhesion energy of the individual bacteria within an Escherichia coli biofilm. Medically relevant concentrations of chlorhexidine were tested, and cells exposed to 1% (w/v) and 0.1% more than doubled in stiffness, while those exposed to 0.01% showed no change in elasticity. Adhesion to the biofilm also increased with exposure to 1% chlorhexidine, but not for the lower concentrations tested. Given the prevalence of chlorhexidine in clinical and commercial applications, these results have important ramifications on biofilm removal technique

    The Effects of Medically Relevant Compounds on the Physical Properties of Biofilms

    Get PDF

    The Effects of Marine Bacteria on Barite Growth and Morphology

    Get PDF

    Characterizing Pilus-Mediated Adhesion of Biofilm-Forming E. coli to Chemically Diverse Surfaces Using Atomic Force Microscopy

    Get PDF
    Biofilms are complex communities of microorganisms living together at an interface. Because biofilms are often associated with contamination and infection, it is critical to understand how bacterial cells adhere to surfaces in the early stages of biofilm formation. Even harmless commensal Escherichia coli naturally forms biofilms in the human digestive tract by adhering to epithelial cells, a trait that presents major concerns in the case of pathogenic E. coli strains. The laboratory strain E. coli ZK1056 provides an intriguing model system for pathogenic E. coli strains because it forms biofilms robustly on a wide range of surfaces.E. coli ZK1056 cells spontaneously form living biofilms on polylysine-coated AFM cantilevers, allowing us to measure quantitatively by AFM the adhesion between native biofilm cells and substrates of our choice. We use these biofilm-covered cantilevers to probe E. coli ZK1056 adhesion to five substrates with distinct and well-characterized surface chemistries, including fluorinated, amineterminated, and PEG-like monolayers, as well as unmodified silicon wafer and mica. Notably, after only 0−10 s of contact time, the biofilms adhere strongly to fluorinated and amine-terminated monolayers as well as to mica and weakly to “antifouling” PEG monolayers, despite the wide variation in hydrophobicity and charge of these substrates. In each case the AFM retraction curves display distinct adhesion profiles in terms of both force and distance, highlighting the cells’ ability to adapt their adhesive properties to disparate surfaces. Specific inhibition of the pilus protein FimH by a nonhydrolyzable mannose analogue leads to diminished adhesion in all cases, demonstrating the critical role of type I pili in adhesion by this strain to surfaces bearing widely different functional groups. The strong and adaptable binding of FimH to diverse surfaces has unexpected implications for the design of antifouling surfaces and antiadhesion therapies

    Characterizing Pilus-Mediated Adhesion of Biofilm-Forming <i>E. coli</i> to Chemically Diverse Surfaces Using Atomic Force Microscopy

    No full text
    Biofilms are complex communities of microorganisms living together at an interface. Because biofilms are often associated with contamination and infection, it is critical to understand how bacterial cells adhere to surfaces in the early stages of biofilm formation. Even harmless commensal <i>Escherichia coli</i> naturally forms biofilms in the human digestive tract by adhering to epithelial cells, a trait that presents major concerns in the case of pathogenic <i>E. coli</i> strains. The laboratory strain <i>E. coli</i> ZK1056 provides an intriguing model system for pathogenic <i>E. coli</i> strains because it forms biofilms robustly on a wide range of surfaces.<i>E. coli</i> ZK1056 cells spontaneously form living biofilms on polylysine-coated AFM cantilevers, allowing us to measure quantitatively by AFM the adhesion between native biofilm cells and substrates of our choice. We use these biofilm-covered cantilevers to probe <i>E. coli</i> ZK1056 adhesion to five substrates with distinct and well-characterized surface chemistries, including fluorinated, amine-terminated, and PEG-like monolayers, as well as unmodified silicon wafer and mica. Notably, after only 0–10 s of contact time, the biofilms adhere strongly to fluorinated and amine-terminated monolayers as well as to mica and weakly to “antifouling” PEG monolayers, despite the wide variation in hydrophobicity and charge of these substrates. In each case the AFM retraction curves display distinct adhesion profiles in terms of both force and distance, highlighting the cells’ ability to adapt their adhesive properties to disparate surfaces. Specific inhibition of the pilus protein FimH by a nonhydrolyzable mannose analogue leads to diminished adhesion in all cases, demonstrating the critical role of type I pili in adhesion by this strain to surfaces bearing widely different functional groups. The strong and adaptable binding of FimH to diverse surfaces has unexpected implications for the design of antifouling surfaces and antiadhesion therapies
    corecore