76 research outputs found

    Intermatrix synthesis: easy technique permitting preparation of polymer-stabilized nanoparticles with desired composition and structure

    Get PDF
    The synthesis of polymer-stabilized nanoparticles (PSNPs) can be successfully carried out using intermatrix synthesis (IMS) technique, which consists in sequential loading of the functional groups of a polymer with the desired metal ions followed by nanoparticles (NPs) formation stage. After each metal-loading-NPs-formation cycle, the functional groups of the polymer appear to be regenerated. This allows for repeating the cycles to increase the NPs content or to obtain NPs with different structures and compositions (e.g. core-shell or core-sandwich). This article reports the results on the further development of the IMS technique. The formation of NPs has been shown to proceed by not only the metal reduction reaction (e.g. Cu0-NPs) but also by the precipitation reaction resulting in the IMS of PSNPs of metal salts (e.g. CuS-NPs)

    Electron Identification with a Prototype of the Transition Radiation Tracker for the ATLAS experiment

    Get PDF
    A prototype of the Transition Radiation Tracker (TRT) for the ATLAS detector at the LHC has been built and tested. The TRT is an array of straw tubes which integrate tracking and electron identification by transition radiation into one device. Results of experimental measurements and of comparisons with Monte Carlo simulations are presented for the electron identification performance as a function of various detector parameters. Under optimal operating conditions, a rejection against pions of a factor 100 was achieved with 90\% electron efficiency

    Intermatrix Synthesis and Characterization of Polymer-Stabilized Functional Metal and Metal Oxide Nanoparticles

    No full text
    Metal oxide nanoparticles (MONPs) are excellent candidates for understanding and controlling the magnetic properties of NPs through the variation of chemistry at the atomic level. In this chapter the authors describe the preparation of Fe3O4 NPs and coat them with silver within various porous polymer matrices, of both anionic and cationic functionality. One of the synthetic advantages of the intermatrix synthesis (IMS) method allows the preparation of various NP architectures. The chapter discusses the synthesis of superparamagnetic core NPs, which are represented by iron oxide NPs. When preparing core-shell NPs, it is important to know the nature of the oxidative states of the metals containing polymer-metal nanocomposites (NCs) in order to determine whether the desired composite has been synthesized. Scanning electron microscopy coupled with an energy-dispersive spectrometer (EDS), is used to characterize the polymer-NP NC material.</p

    Characterization of fibrous polymer silver/cobalt nanocomposite with enhanced bactericide activity

    No full text
    This manuscript describes the synthesis (based on the intermatrix synthesis (IMS) method), optimization, and application to bacterial disinfection of Ag@Co polymer metal nanocomposite materials with magnetic and bactericidal properties. This material showed ideal bactericide features for being applied to bacterial disinfection of water, particularly (1) an enhanced bactericidal activity (when compared with other nanocomposites only containing Ag or Co nanoparticles), with a cell viability close to 0% for bacterial suspensions with an initial concentration below 105 colony forming units per milliliter (CFU/mL) after a single pass through the material, (2) capacity of killing a wide range of bacterial types (from coliforms to Grampositive bacteria), and (3) a long performance-time, with an efficiency of 100% (0% viability) up to 1 h of operation and higher than 90% during the first 24 h of continuous operation. The nanocomposite also showed a good performance when applied to water samples from natural sources with more complex matrices with efficiencies always higher than 80%.Peer Reviewe
    corecore