437 research outputs found

    Domain structure of ultrathin ferromagnetic elements in the presence of Dzyaloshinskii-Moriya interaction

    Get PDF
    Recent advances in nanofabrication make it possible to produce multilayer nanostructures composed of ultrathin film materials with thickness down to a few monolayers of atoms and lateral extent of several tens of nanometers. At these scales, ferromagnetic materials begin to exhibit unusual properties, such as perpendicular magnetocrystalline anisotropy and antisymmetric exchange, also referred to as Dzyaloshinskii-Moriya interaction (DMI), because of the increased importance of interfacial effects. The presence of surface DMI has been demonstrated to fundamentally alter the structure of domain walls. Here we use the micromagnetic modeling framework to analyse the existence and structure of chiral domain walls, viewed as minimizers of a suitable micromagnetic energy functional. We explicitly construct the minimizers in the one-dimensional setting, both for the interior and edge walls, for a broad range of parameters. We then use the methods of {Γ\Gamma}-convergence to analyze the asymptotics of the two-dimensional mag- netization patterns in samples of large spatial extent in the presence of weak applied magnetic fields

    Comparison of topologies on *-algebras of locally measurable operators

    Full text link
    We consider the locally measure topology t(M)t(\mathcal{M}) on the *-algebra LS(M)LS(\mathcal{M}) of all locally measurable operators affiliated with a von Neumann algebra M\mathcal{M}. We prove that t(M)t(\mathcal{M}) coincides with the (o)(o)-topology on LSh(M)={T∈LS(M):T∗=T}LS_h(\mathcal{M})=\{T\in LS(\mathcal{M}): T^*=T\} if and only if the algebra M\mathcal{M} is σ\sigma-finite and a finite algebra. We study relationships between the topology t(M)t(\mathcal{M}) and various topologies generated by faithful normal semifinite traces on M\mathcal{M}.Comment: 21 page

    Bit storage by 360∘360^\circ domain walls in ferromagnetic nanorings

    Full text link
    We propose a design for the magnetic memory cell which allows an efficient storage, recording, and readout of information on the basis of thin film ferromagnetic nanorings. The information bit is represented by the polarity of a stable 360∘^\circ domain wall introduced into the ring. Switching between the two magnetization states is achieved by the current applied to a wire passing through the ring, whereby the 360∘360^\circ domain wall splits into two charged 180∘180^\circ walls, which then move to the opposite extreme of the ring to recombine into a 360∘360^\circ wall of the opposite polarity

    One-dimensional in-plane edge domain walls in ultrathin ferromagnetic films

    Get PDF
    We study existence and properties of one-dimensional edge domain walls in ultrathin ferromagnetic films with uniaxial in-plane magnetic anisotropy. In these materials, the magnetization vector is constrained to lie entirely in the film plane, with the preferred directions dictated by the magnetocrystalline easy axis. We consider magnetization profiles in the vicinity of a straight film edge oriented at an arbitrary angle with respect to the easy axis. To minimize the micromagnetic energy, these profiles form transition layers in which the magnetization vector rotates away from the direction of the easy axis to align with the film edge. We prove existence of edge domain walls as minimizers of the appropriate one-dimensional micromagnetic energy functional and show that they are classical solutions of the associated Euler-Lagrange equation with Dirichlet boundary condition at the edge. We also perform a numerical study of these one-dimensional domain walls and uncover further properties of these domain wall profiles

    Reduced energies for thin ferromagnetic films with perpendicular anisotropy

    Full text link
    We derive four reduced two-dimensional models that describe, at different spatial scales, the micromagnetics of ultrathin ferromagnetic materials of finite spatial extent featuring perpendicular magnetic anisotropy and interfacial Dzyaloshinskii-Moriya interaction. Starting with a microscopic model that regularizes the stray field near the material's lateral edges, we carry out an asymptotic analysis of the energy by means of Γ\Gamma-convergence. Depending on the scaling assumptions on the size of the material domain vs. the strength of dipolar interaction, we obtain a hierarchy of the limit energies that exhibit progressively stronger stray field effects of the material edges. These limit energies feature, respectively, a renormalization of the out-of-plane anisotropy, an additional local boundary penalty term forcing out-of-plane alignment of the magnetization at the edge, a pinned magnetization at the edge, and, finally, a pinned magnetization and an additional field-like term that blows up at the edge, as the sample's lateral size is increased. The pinning of the magnetization at the edge restores the topological protection and enables the existence of magnetic skyrmions in bounded samples.Comment: 29 pages, 1 figur

    Variational principles of micromagnetics revisited

    Full text link
    We revisit the basic variational formulation of the minimization problem associated with the micromagnetic energy, with an emphasis on the treatment of the stray field contribution to the energy, which is intrinsically non-local. Under minimal assumptions, we establish three distinct variational principles for the stray field energy: a minimax principle involving magnetic scalar potential and two minimization principles involving magnetic vector potential. We then apply our formulations to the dimension reduction problem for thin ferromagnetic shells of arbitrary shapes
    • …
    corecore