89 research outputs found

    Weighted interpolation inequalities: a perturbation approach

    Get PDF
    We study optimal functions in a family of Caffarelli-Kohn-Nirenberg inequalities with a power-law weight, in a regime for which standard symmetrization techniques fail. We establish the existence of optimal functions, study their properties and prove that they are radial when the power in the weight is small enough. Radial symmetry up to translations is true for the limiting case where the weight vanishes, a case which corresponds to a well-known subfamily of Gagliardo-Nirenberg inequalities. Our approach is based on a concentration-compactness analysis and on a perturbation method which uses a spectral gap inequality. As a consequence, we prove that optimal functions are explicit and given by Barenblatt-type profiles in the perturbative regime

    Weighted fast diffusion equations (Part II): Sharp asymptotic rates of convergence in relative error by entropy methods

    Full text link
    This paper is the second part of the study. In Part~I, self-similar solutions of a weighted fast diffusion equation (WFD) were related to optimal functions in a family of subcritical Caffarelli-Kohn-Nirenberg inequalities (CKN) applied to radially symmetric functions. For these inequalities, the linear instability (symmetry breaking) of the optimal radial solutions relies on the spectral properties of the linearized evolution operator. Symmetry breaking in (CKN) was also related to large-time asymptotics of (WFD), at formal level. A first purpose of Part~II is to give a rigorous justification of this point, that is, to determine the asymptotic rates of convergence of the solutions to (WFD) in the symmetry range of (CKN) as well as in the symmetry breaking range, and even in regimes beyond the supercritical exponent in (CKN). Global rates of convergence with respect to a free energy (or entropy) functional are also investigated, as well as uniform convergence to self-similar solutions in the strong sense of the relative error. Differences with large-time asymptotics of fast diffusion equations without weights will be emphasized

    Weighted fast diffusion equations (Part I): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities

    Full text link
    In this paper we consider a family of Caffarelli-Kohn-Nirenberg interpolation inequalities (CKN), with two radial power law weights and exponents in a subcritical range. We address the question of symmetry breaking: are the optimal functions radially symmetric, or not ? Our intuition comes from a weighted fast diffusion (WFD) flow: if symmetry holds, then an explicit entropy - entropy production inequality which governs the intermediate asymptotics is indeed equivalent to (CKN), and the self-similar profiles are optimal for (CKN). We establish an explicit symmetry breaking condition by proving the linear instability of the radial optimal functions for (CKN). Symmetry breaking in (CKN) also has consequences on entropy - entropy production inequalities and on the intermediate asymptotics for (WFD). Even when no symmetry holds in (CKN), asymptotic rates of convergence of the solutions to (WFD) are determined by a weighted Hardy-Poincar{\'e} inequality which is interpreted as a linearized entropy - entropy production inequality. All our results rely on the study of the bottom of the spectrum of the linearized diffusion operator around the self-similar profiles, which is equivalent to the linearization of (CKN) around the radial optimal functions, and on variational methods. Consequences for the (WFD) flow will be studied in Part II of this work

    Beyond dynamical mean-field theory of neural networks

    Get PDF
    doi:10.1186/1471-2202-14-S1-P60International audienc
    • …
    corecore