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Abstract

Starting from first principle the Hamiltonian formalism
for the description of the dynamics of particles in non scal-
ing FFAG machines has been developed. The stationary
reference (closed) orbit has been found within the Hamil-
tonian framework. The dependence of the path length on
the energy deviation has been described in terms of higher
order dispersion functions. The latter have been used sub-
sequently to specify the longitudinal part of the Hamilto-
nian. It has been shown that higher order phase slip coeffi-
cients should be taken into account to adequately describe
the acceleration in non scaling FFAG accelerators.

INTRODUCTION

Fixed field alternating gradient (FFAG) accelerators
were proposed half century ago [1, 2], when acceleration
of electrons was first demonstrated. In addition to that,
acceleration of protons has been recently achieved at the
KEK Proof-of-Principle (PoP) proton FFAG [3]. Machines
of this type use conventional magnets with the bending and
focusing field being kept constant during acceleration. The
latter alternate in sign, thus providing a more compact ra-
dial extension and consequently smaller aperture as com-
pared to the AVF cyclotrons. The ring essentially consists
of a sequence of short periods with very large periodicity.

Non scaling FFAG machines have until recently been
considered as an alternative. The bending and the focus-
ing is provided simultaneously by focusing and defocus-
ing quadrupole magnets repeating in alternating sequence.
There is a number of advantages of the non scaling FFAG
lattice as compared to the scaling one, among which are
the relatively small magnet aperture and the lower field
strength. Unfortunately this lattice leads to a large betatron
tune variation across the required energy range for acceler-
ation as opposed to the scaling lattice, where the betatron
tune stays constant. As a consequence several resonances
are crossed during the acceleration cycle, some of them
nonlinear created by the magnetic field imperfections, as
well as half-integer and integer ones.

Because non scaling FFAG accelerators have otherwise
very desirable features, it is important to investigate ana-
lytically and numerically some of the peculiarities of the
beam dynamics, the new type of fast acceleration regime
(so-called serpentine acceleration) and the effects of cross-
ing of linear as well as nonlinear resonances. Some of these
problems will be discussed in the present paper.
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HAMILTONIAN FORMALISM

General Description

The Hamiltonian describing the motion of a particle in
a natural coordinate system associated with a planar refer-
ence curve with curvature K is [4]

H̃ = −(1 + Kx̃)

×
[√

γ2 − 1−
(
P̃x − q̃Ax

)2

−
(
P̃z − q̃Az

)2

+ q̃As

]
.

(1)
Here A = (Ax, Az , As) is the electromagnetic vector po-
tential, while x̃ and z̃ are the horizontal and vertical de-
viations from the reference orbit with canonical conjugate
momenta P̃x,z = Px,z/(m0c) = Px,z/p0. Furthermore,
the distance s along the circumference of the machine is
chosen as an independent variable, m0 is the particle rest
mass and q is the charge, where q̃ = q/(m0c) = q/p0. The
longitudinal canonical coordinate Θ and its canonical con-
jugate variable γ comprising the third degree of freedom
are given by

Θ = −ct, γ =
E

E0
=

E

m0c2
. (2)

Since the longitudinal quantities are dominant, one can
expand the square root in power series in the transverse
canonical coordinates. Tedious but straightforward algebra
yields [4]

H̃ = H̃0 + H̃1 + H̃2 + H̃3 + H̃4 + . . . , (3)

H̃0 = −βγ +
1

E0

(
dΔE

ds

) ∫
dΘ sinφ(Θ), (4)

H̃1 = −(βγ − βeγe)Kx̃, (5)

H̃2 =
P̃ 2

x + P̃ 2
z

2βγ
+

1
2
[(

g + βeγeK
2
)
x̃2 − gz̃2

]
, (6)

H̃3 =
Kx̃

2βγ

(
P̃ 2

x + P̃ 2
z

)
+

Kg

6
(
2x̃3 − 3x̃z̃2

)
, (7)

H̃4 =

(
P̃ 2

x + P̃ 2
z

)2

8β3γ3
− K2g

24
z̃4 = q̃

(
∂Bz

∂x

)

x=z=0

, (8)

where dΔE/ds is the energy gain per unit longitudinal
distance s, which in thin lens approximation scales as
ΔE/Δs, where Δs is the length of the cavity. In addition,
γe is the energy corresponding to the reference orbit.
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Reference Orbit

The FFAG lattice with polygonal structure in the hori-
zontal plane will be considered here. To define and subse-
quently determine the stationary reference orbit, it is con-
venient to use a global Cartesian coordinate system whose
origin is located in the centre of the polygon. To describe
step by step the fraction of the reference orbit related to a
particular side of the polygon, we rotate each time the axes
of the coordinate system by an angle Θp = 2π/Np, where
Np is the number of sides of the polygon.

Let Xe and Pe denote the horizontal position along the
reference orbit and the reference momentum, respectively.
The vertical component of the magnetic field in the median
plane of a perfectly linear machine can be written as

Bz(Xe, s) = a1(s)[Xe −Xc − d(s)], a1 =
g

q̃
, (9)

where s is the distance along the polygon side. The latter
is at a distance

Xc =
Lp

2 tan(Θp/2)
, (10)

from the centre of the polygon, where the length of the
polygon side Lp is actually representing the periodicity of
the lattice. The quantity d(s) in Eq. (9) is the relative offset
of the magnetic centre from the polygon centre line.

A design (reference) orbit corresponding to a local cur-
vature K(Xe, s) can be defined according to the relation

K(Xe, s) =
q

p0βeγe
Bz(Xe, s). (11)

In terms of the reference orbit position Xe(s) the equation
for the curvature can be written as [5]

X ′′
e =

q

p0βeγe

(
1 + X ′2

e

)3/2
Bz(Xe, s), (12)

where the prime implies differentiation with respect to s.
Note that Eq. (12) parameterizing the local curvature can
be derived from a Hamiltonian

He(Xe, Pe; s) = −
√

β2
eγ2

e − P 2
e − q̃

∫
dXeBz(Xe, s),

(13)
which is nothing but the stationary part of the Hamiltonian
(1) evaluated on the reference trajectory (x̃ = 0 and the
accelerating cavities being switched off, respectively).

DISPERSION AND BETATRON MOTION

It is convenient to pass to new scaled variables as follows

p̃x,z =
P̃x,z

βeγe
, h =

γ

β2
eγe

, τ = βeΘ, Γe =
βγ

βeγe
.

(14)
Thus, expressions (4) – (8) become

H̃0 = −Γe +
1

β2
eEe

(
dΔE

ds

) ∫
dτ sin φ(τ), (15)

H̃1 = −(Γe − 1)Kx̃, (16)

H̃2 =
p̃2

x + p̃2
z

2Γe
+

1
2
[(

ge + K2
)
x̃2 − gez̃

2
]
, (17)

H̃3 =
Kx̃

2Γe

(
p̃2

x + p̃2
z

)
+

Kge

6
(
2x̃3 − 3x̃z̃2

)
, (18)

H̃4 =

(
p̃2

x + p̃2
z

)2

8Γ3
e

− K2ge

24
z̃4, ge =

g

βeγe
. (19)

The longitudinal part (τe, γe) of the reference orbit can be
extracted by means of the canonical transformation

F2

(
x̃, ˜̃px, z̃, ˜̃pz , τ, η; s

)
= x̃˜̃px + z̃˜̃pz +(τ +s)

(
η +

1
β2

e

)
,

(20)

σ = τ + s, η = h− 1
β2

e

. (21)

The linear and higher order dispersion can be introduced
via a canonical transformation aimed to cancel the first or-
der Hamiltonian H̃1 in all orders of η. The explicit form of
the generating function is

G2(x̃, p̂x, z̃, p̂z, σ, η̂; s) = ση̂ + z̃p̂z + x̃p̂x

+
∞∑

k=1

η̂k[x̃Xk(s)− p̂xPk(s) + Sk(s)], (22)

x̃ = x̂ +
∞∑

k=1

η̂kPk, p̃x = p̂x +
∞∑

k=1

η̂kXk, (23)

σ = σ̂ +
∞∑

k=1

kη̂k−1(Pkp̂x −Xkx̂)

−
∞∑

k=1

kη̂k−1

(
Sk + Xk

∞∑

m=1

η̂mPm

)
. (24)

Equating terms of the form x̂η̂n and p̂xη̂n in the new trans-
formed Hamiltonian, we determine order by order the con-
ventional (first order) and higher order dispersions. The
first order in η̂ (terms proportional to x̂η̂ and p̂xη̂) yields
the well-known result

P ′1 = X1, X ′1 +
(
ge + K2

)
P1 = K. (25)

From the requirement that the second sum in equation (24)
is identically zero, we readily obtain S1 = 0, and

S2 = −X1P1

2
. (26)

In second order the dispersion equations take the form

P ′2 = X2 −X1 + KX1P1, (27)

X ′2 +
(
ge + K2

)
P2 = −KgeP2

1 −
KX 2

1

2
− K

2γ2
e

. (28)
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In addition, we have

S3 = −1
3
(X1P2 + 2X2P1). (29)

Up to third order in η̂ the new Hamiltonian describing the
longitudinal motion and the linear transverse motion ac-
quires the form

Ĥ0 = −K̃1η̂
2

2
+
K̃2η̂

3

3
+

1
β2

eEe

(
dΔE

ds

) ∫
dτ sin φ(τ),

(30)

Ĥ2 =
p̂2

x + p̂2
z

2
+

1
2
[(

ge + K2
)
x̂2 − geẑ

2
]
, (31)

where

K̃1 = KP1 −
1
γ2

e

, K̃2 =
KP1

γ2
e

−KP2 −
X 2

1

2
− 3

2γ2
e

.

(32)
The averaged over one lattice period

K1 =
1
Lp

s+Lp∫

s

dλK̃1(λ), K2 =
1
Lp

s+Lp∫

s

dλK̃2(λ),

(33)
represent the first and higher order phase slip coefficients,
respectively.

The Twiss parameters corresponding to a fixed refer-
ence energy γe can be introduced in a conventional manner.
For the sake of generality instead of (31) let us consider a
Hamiltonian of the type

Ĥb =
∑

u=(x,z)

[Fup̂2
u

2
+Ruûp̂u +

Guû2

2

]
. (34)

A generic Hamiltonian of the type (34) can be transformed
to the normal form

Hb =
∑

u=(x,z)

χ′u
2

(
P

2

u + U
2
)
, (35)

by means of a canonical transformation specified by the
generating function

F2

(
x̂, P x, ẑ, P z ; s

)
=

∑

u=(x,z)

(
ûPu√

βu
− αuû2

2βu

)
. (36)

The old and the new canonical variables are related through
the expressions

û = U
√

βu, p̂u =
1√
βu

(
Pu − αuU

)
. (37)

The phase advance χu(s) and the generalized Twiss param-
eters αu(s), βu(s) and γu(s) are defined as

χ′u =
dχu

ds
=
Fu

βu
, (38)

α′u =
dαu

ds
= Guβu −Fuγu, (39)

β′u =
dβu

ds
= −2Fuαu + 2Ruβu. (40)

The third Twiss parameter γu(s) is introduced according to
the well-known expression

βuγu − α2
u = 1. (41)

The corresponding betatron tunes are determined as

νu =
Np

2π

s+Lp∫

s

dλFu(λ)
βu(λ)

. (42)

It is worthwhile to note that if one takes into account
higher order nonlinear dispersion function contributions
into the longitudinal part of the Hamiltonian (30), the time
of flight variable τ becomes a polynomial function of the
energy γ. Moreover, the approach described here provides
a systematic perturbative tool to uniquely determine the
polynomial coefficients up to arbitrary order. However, in
practice a parabolic approximation of the time of flight as
a function of energy is sufficient [6].

CONCLUDING REMARKS

Based on the Hamiltonian formalism, the synchro-
betatron approach for the description of the dynamics of
particles in non scaling FFAG machines has been devel-
oped. Its starting point is the specification of the static ref-
erence (closed) orbit for a fixed energy as a solution of the
equations of motion in the machine reference system. The
problem of acceleration and dynamical stability can be se-
quentially studied in the natural coordinate system associ-
ated with the reference orbit thus determined.

It has been further shown that the dependence of the path
length on the energy deviation can be described in terms of
higher order (nonlinear) dispersion functions. The method
provides a systematic tool to determine the dispersion func-
tions to every desirable order.
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