240 research outputs found

    Kinetic Heterogeneities in a Highly Supercooled Liquid

    Full text link
    We study a highly supercooled two-dimensional fluid mixture via molecular dynamics simulation. We follow bond breakage events among particle pairs, which occur on the scale of the α\alpha relaxation time τα\tau_{\alpha}. Large scale heterogeneities analogous to the critical fluctuations in Ising systems are found in the spatial distribution of bonds which are broken in a time interval with a width of order 0.05τα0.05\tau_{\alpha}. The structure factor of the broken bond density is well approximated by the Ornstein-Zernike form. The correlation length is of order 100σ1100 \sigma_1 at the lowest temperature studied, σ1\sigma_1 being the particle size. The weakly bonded regions thus identified evolve in time with strong spatial correlations.Comment: 3 pages, 6 figure

    Genetic architecture of delayed senescence, biomass, and grain yield under drought stress in cowpea

    Get PDF
    CowpeaThe stay-green phenomenon is a key plant trait with wide usage in managing crop production under limited water conditions. This trait enhances delayed senescence, biomass, and grain yield under drought stress. In this study we sought to identify QTLs in cowpea (Vigna unguiculata) consistent across experiments conducted in Burkina Faso, Nigeria, Senegal, and the United States of America under limited water conditions. A panel of 383 diverse cowpea accessions and a recombinant inbred line population (RIL) were SNP genotyped using an Illumina 1536 GoldenGate assay. Phenotypic data from thirteen experiments conducted across the four countries were used to identify SNP-trait associations based on linkage disequilibrium association mapping, with bi-parental QTL mapping as a complementary strategy. We identified seven loci, five of which exhibited evidence suggesting pleiotropic effects (stay-green) between delayed senescence, biomass, and grain yield. Further, we provide evidence suggesting the existence of positive pleiotropy in cowpea based on positively correlated mean phenotypic values (0.34, r ,0.87) and allele effects (0.07, r ,0.86) for delayed senescence and grain yield across three African environments. Three of the five putative stay-green QTLs, Dro-1, 3, and 7 were identified in both RILs and diverse germplasm with resolutions of 3.2 cM or less for each of the three loci, suggesting that these may be valuable targets for marker-assisted breeding in cowpea. Also, the co-location of early vegetative delayed senescence with biomass and grain yield QTLs suggests the possibility of using delayed senescence at the seedling stage as a rapid screening tool for post-flowering drought tolerance in cowpea breeding. BLAST analysis using EST sequences harboring SNPs with the highest associations provided a genomic context for loci identified in this study in closely related common bean (Phaseolus vulgaris) and soybean (Glycine max) reference genomes

    Heterogeneous Diffusion in Highly Supercooled Liquids

    Full text link
    The diffusivity of tagged particles is demonstrated to be very heterogeneous on time scales comparable to or shorter than the α\alpha relaxation time τα\tau_{\alpha} (\cong the stress relaxation time) in a highly supercooled liquid via 3D molecular dynamics simulation. The particle motions in the relatively active regions dominantly contribute to the mean square displacement, giving rise to a diffusion constant systematically larger than the Einstein-Stokes value. The van Hove self-correlation function Gs(r,t)G_s(r,t) is shown to have a long distance tail which can be scaled in terms of r/t1/2r/t^{1/2} for t \ls 3\tau_{\alpha}. Its presence indicates heterogeneous diffusion in the active regions. However, the diffusion process eventually becomes homogeneous on time scales longer than the life time of the heterogeneity structure (3τα\sim 3 \tau_{\alpha}).Comment: 4 pages, 5 figure

    Evidence for High-frequency Phonon Mediated S-wave Superconductivity : 11B-NMR Study of Al-doped MgB2

    Full text link
    We report 11^{11}B-NMR study on Al-doped MgB2_2 that addresses a possible mechanism for a high superconducting (SC) transition temperature (TcT_c) of 40\sim 40 K in recently discovered MgB2_2. The result of nuclear spin lattice relaxation rate 1/T11/T_1 in the SC state revealed that the size in the SC gap is not changed by substituting Al for Mg. The reduction on TcT_c by Al-doping is shown to be due to the decrease of N(EF)N(E_F). According to the McMillan equation, the experimental relation between TcT_c and the relative change in N(EF)N(E_F) allowed us to estimate a characteristic phonon frequency ω700\omega \sim 700 K and an electron-phonon coupling constant λ0.87\lambda \sim 0.87. These results suggest that the high-TcT_c superconductivity in MgB2_2 is mediated by the strong electron-phonon coupling with high-frequency phonons.Comment: 6pages, 3figure

    Specific heat and electronic states of superconducting boron-doped silicon carbide

    Full text link
    The discoveries of superconductivity in the heavily-boron doped semiconductors diamond (C:B) in 2004 and silicon (Si:B) in 2006 have renewed the interest in the physics of the superconducting state of doped semiconductors. Recently, we discovered superconductivity in the closely related ''mixed'' system heavily boron-doped silcon carbide (SiC:B). Interestingly, the latter compound is a type-I superconductor whereas the two aforementioned materials are type-II. In this paper we present an extensive analysis of our recent specific-heat study, as well as the band structure and expected Fermi surfaces. We observe an apparent quadratic temperature dependence of the electronic specific heat in the superconducting state. Possible reasons are a nodal gap structure or a residual density of states due to non-superconducting parts of the sample. The basic superconducting parameters are estimated in a Ginzburg-Landau framework. We compare and discuss our results with those reported for C:B and Si:B. Finally, we comment on possible origins of the difference in the superconductivity of SiC:B compared to the two ''parent'' materials C:B and Si:B.Comment: 9 pages, 7 figures, 2 tables, submitted to Phys. Rev.

    Dynamics of Highly Supercooled Liquids:Heterogeneity, Rheology, and Diffusion

    Full text link
    Highly supercooled liquids with soft-core potentials are studied via molecular dynamics simulations in two and three dimensions in quiescent and sheared conditions.We may define bonds between neighboring particle pairs unambiguously owing to the sharpness of the first peak of the pair correlation functions. Upon structural rearrangements, they break collectively in the form of clusters whose sizes grow with lowering the temperature TT. The bond life time τb\tau_b, which depends on TT and the shear rate \gdot, is on the order of the usual structural or α\alpha relaxation time τα\tau_{\alpha} in weak shear \gdot \tau_{\alpha} \ll 1, while it decreases as 1/\gdot in strong shear \gdot\tau_{\alpha} \gg 1 due to shear-induced cage breakage. Accumulated broken bonds in a time interval (0.05τb\sim 0.05\tau_b) closely resemble the critical fluctuations of Ising spin systems. For example, their structure factor is well fitted to the Ornstein-Zernike form, which yields the correlation length ξ\xi representing the maximum size of the clusters composed of broken bonds. We also find a dynamical scaling relation, τbξz\tau_b \sim \xi^{z}, valid for any TT and \gdot with z=4z=4 in two dimensions and z=2z=2 in three dimensions. The viscosity is of order τb\tau_b for any TT and \gdot, so marked shear-thinning behavior emerges. The shear stress is close to a limiting stress in a wide shear region. We also examine motion of tagged particles in shear in three dimensions. The diffusion constant is found to be of order τbν\tau_b^{-\nu} with ν=0.750.8\nu=0.75 \sim 0.8 for any TT and \gdot, so it is much enhanced in strong shear compared with its value at zero shear. This indicates breakdown of the Einstein-Stokes relation in accord with experiments. Some possible experiments are also proposed.Comment: 20pages (including figures

    Growing Correlation Length on Cooling Below the Onset of Caging in a Simulated Glass-Forming Liquid

    Get PDF
    We present a calculation of a fourth-order, time-dependent density correlation function that measures higher-order spatiotemporall correlations of the density of a liquid. From molecular dynamics simulations of a glass-forming Lennard-Jones liquid, we find that the characteristic length scale of this function has a maximum as a function of time which increases steadily beyond the characteristic length of the static pair correlation function g(r)g(r) in the temperature range approaching the mode coupling temperature from above

    Electronic structure of MgB2_2: X-ray emission and absorption studies

    Full text link
    Measurements of x-ray emission and absorption spectra of the constituents of MgB2_2 are presented. The results obtained are in good agreement with calculated x-ray spectra, with dipole matrix elements taken into account. The comparison of x-ray emission spectra of graphite, AlB2_2, and MgB2_2 in the binding energy scale supports the idea of charge transfer from σ\sigma to π\pi bands, which creates holes at the top of the bonding σ\sigma bands and drives the high-Tc_cComment: final version as published in PR
    corecore