436 research outputs found

    Specific heat of aluminium-doped superconducting silicon carbide

    Full text link
    The discoveries of superconductivity in heavily boron-doped diamond, silicon and silicon carbide renewed the interest in the ground states of charge-carrier doped wide-gap semiconductors. Recently, aluminium doping in silicon carbide successfully yielded a metallic phase from which at high aluminium concentrations superconductivity emerges. Here, we present a specific-heat study on superconducting aluminium-doped silicon carbide. We observe a clear jump anomaly at the superconducting transition temperature 1.5 K indicating that aluminium-doped silicon carbide is a bulk superconductor. An analysis of the jump anomaly suggests BCS-like phonon-mediated superconductivity in this system.Comment: 4 pages, 2 figure

    Superconductivity in heavily boron-doped silicon carbide

    Full text link
    The discoveries of superconductivity in heavily boron-doped diamond (C:B) in 2004 and silicon (Si:B) in 2006 renew the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily-boron doped silicon carbide (SiC:B). The sample used for that study consists of cubic and hexagonal SiC phase fractions and hence this lead to the question which of them participates in the superconductivity. Here we focus on a sample which mainly consists of hexagonal SiC without any indication for the cubic modification by means of x-ray diffraction, resistivity, and ac susceptibility.Comment: 9 pages, 5 figure

    Application of Hosaka and DJ Kim Whatmann paper protocols for rapid isolation of cowpea DNA

    Get PDF
    The traditional liquid nitrogen DNA extraction method is expensive and tedious. There is, therefore, the need for cheaper and faster methods of DNA extraction for efficient application of marker assisted selection (MAS) for breeding for striga resistance in cowpea to be able to handle large number ofsamples at a time. Two DNA extraction methods; Hosaka (2004) and DJ Kim Whatmann paper (unpublished) were tested on cowpea line IT06K-5-83 under different conditions. The results revealed that both methods with modifications can work with cowpea. However, Hosaka (2004) method seems to be more promising than the other method for DNA extraction in cowpea because it gives better and more consistent DNA band

    Superconductivity of hexagonal heavily-boron doped silicon carbide

    Full text link
    In 2004 the discovery of superconductivity in heavily boron-doped diamond (C:B) led to an increasing interest in the superconducting phases of wide-gap semiconductors. Subsequently superconductivity was found in heavily boron-doped cubic silicon (Si:B) and recently in the stochiometric ''mixture'' of heavily boron-doped silicon carbide (SiC:B). The latter system surprisingly exhibits type-I superconductivity in contrast to the type-II superconductors C:B and Si:B. Here we will focus on the specific heat of two different superconducting samples of boron-doped SiC. One of them contains cubic and hexagonal SiC whereas the other consists mainly of hexagonal SiC without any detectable cubic phase fraction. The electronic specific heat in the superconducting state of both samples SiC:B can be described by either assuming a BCS-type exponentional temperature dependence or a power-law behavior.Comment: 4 pages, 1 figure

    Kinetic Heterogeneities in a Highly Supercooled Liquid

    Full text link
    We study a highly supercooled two-dimensional fluid mixture via molecular dynamics simulation. We follow bond breakage events among particle pairs, which occur on the scale of the α\alpha relaxation time τα\tau_{\alpha}. Large scale heterogeneities analogous to the critical fluctuations in Ising systems are found in the spatial distribution of bonds which are broken in a time interval with a width of order 0.05τα0.05\tau_{\alpha}. The structure factor of the broken bond density is well approximated by the Ornstein-Zernike form. The correlation length is of order 100σ1100 \sigma_1 at the lowest temperature studied, σ1\sigma_1 being the particle size. The weakly bonded regions thus identified evolve in time with strong spatial correlations.Comment: 3 pages, 6 figure

    Heterogeneous Diffusion in Highly Supercooled Liquids

    Full text link
    The diffusivity of tagged particles is demonstrated to be very heterogeneous on time scales comparable to or shorter than the α\alpha relaxation time τα\tau_{\alpha} (≅\cong the stress relaxation time) in a highly supercooled liquid via 3D molecular dynamics simulation. The particle motions in the relatively active regions dominantly contribute to the mean square displacement, giving rise to a diffusion constant systematically larger than the Einstein-Stokes value. The van Hove self-correlation function Gs(r,t)G_s(r,t) is shown to have a long distance tail which can be scaled in terms of r/t1/2r/t^{1/2} for t \ls 3\tau_{\alpha}. Its presence indicates heterogeneous diffusion in the active regions. However, the diffusion process eventually becomes homogeneous on time scales longer than the life time of the heterogeneity structure (∼3τα\sim 3 \tau_{\alpha}).Comment: 4 pages, 5 figure

    Genetic diversity and population structure of Striga hermonthica populations from Kenya and Nigeria

    Get PDF
    Article purchasedStriga hermonthica is a parasitic weed that poses a serious threat to the production of economically important cereals in sub-Saharan Africa. The existence of genetic diversity within and between S. hermonthica populations presents a challenge to the successful development and deployment of effective control technologies against this parasitic weed. Understanding the extent of diversity between S. hermonthica populations will facilitate the design and deployment of effective control technologies against the parasite. In the present study, S. hermonthica plants collected from different locations and host crops in Kenya and Nigeria were genotyped using single nucleotide polymorphisms. Statistically significant genetic differentiation (FST = 0.15, P = 0.001) was uncovered between populations collected from the two countries. Also, the populations collected in Nigeria formed three distinct subgroups. Unique loci undergoing selection were observed between the Kenyan and Nigerian populations and among the three subgroups found in Nigeria. Striga hermonthica populations parasitising rice in Kenya appeared to be genetically distinct from those parasitising maize and sorghum. The presence of distinct populations in East and West Africa and in different regions in Nigeria highlights the importance of developing and testing Striga control technologies in multiple locations, including locations representing the geographic regions in Nigeria where genetically distinct subpopulations of the parasite were found. Efforts should also be made to develop relevant control technologies for areas infested with ‘rice-specific’ Striga spp. populations in Kenya

    Evidence for High-frequency Phonon Mediated S-wave Superconductivity : 11B-NMR Study of Al-doped MgB2

    Full text link
    We report 11^{11}B-NMR study on Al-doped MgB2_2 that addresses a possible mechanism for a high superconducting (SC) transition temperature (TcT_c) of ∼40\sim 40 K in recently discovered MgB2_2. The result of nuclear spin lattice relaxation rate 1/T11/T_1 in the SC state revealed that the size in the SC gap is not changed by substituting Al for Mg. The reduction on TcT_c by Al-doping is shown to be due to the decrease of N(EF)N(E_F). According to the McMillan equation, the experimental relation between TcT_c and the relative change in N(EF)N(E_F) allowed us to estimate a characteristic phonon frequency ω∼700\omega \sim 700 K and an electron-phonon coupling constant λ∼0.87\lambda \sim 0.87. These results suggest that the high-TcT_c superconductivity in MgB2_2 is mediated by the strong electron-phonon coupling with high-frequency phonons.Comment: 6pages, 3figure

    RF-BREAKDOWN KICKS AT THE CTF3 TWO-BEAM TEST STAND

    Get PDF
    Abstract The measurement of the effects of RF-breakdown on the beam in CLIC prototype accelerator structures is one of the key aspects of the CLIC two-beam acceleration scheme being addressed at the Two-beam Test Stand (TBTS) at CTF3. RF-breakdown can randomly cause energy loss and transverse kicks to the beam. Transverse kicks have been measured by means of a screen intercepting the beam after the accelerator structure. In correspondence of a RFbreakdown we detect a double beam spot which we interpret as a sudden change of the beam trajectory within a single beam pulse. To time-resolve such effect, the TBTS has been equipped with five inductive Beam Position Monitors (BPMs) and a spectrometer line to measure both relative changes of the beam trajectory and energy losses. Here we discuss the methodology used and we present the latest results of such measurements
    • …
    corecore