15 research outputs found

    Problématiques de sécurité en lien avec les dangers à caractère physico-chimique lors de la valorisation des composés furaniques biosourcés principalement à partir d'humines

    No full text
    Le travail de recherche présenté dans ce manuscrit fait partie intégrante d’un projet de recherche collaborative financé par l’Union-Européenne (Il s’agit d’un projet H2020 de type « Marie-Curie Action »), dénommé HUGS (pour « HUmins as Green and Sustainable precursors for eco-friendly building-blocks and materials »). Ce projet de recherche implique 5 partenaires (INERIS/UTC, France, Avantium, Pays-Bas, Université de Sophia Antipolis/CNRS, France, l’université de Cordoue, Espagne et le LIKAT de l’université de Rostock en Allemagne). La recherche menée dans ce projet est essentiellement structurée via la mise en place de 5 programmes sous-jacents de doctorat (intitulé « Doctorat industriel européen » dans l’appel d’offre H2020 (H2020-MSCA-ITN-2015) auquel a répondu le consortium de recherche), mis en place lors du lancement du projet « HUGS » en 2016. L’objectif premier du projet HUGS concerne l’étude de divers chemins de valorisation à haute valeur ajoutée des humines. Ces résidus de biomasse, à l’instar des lignines se présentent comme des sources de carbone renouvelable à faible coût, en émergence dans nombre de bioraffineries modernes. Les humines sont des résidus complexes résultant du procédé de déshydratation par catalyse acide des polysaccharides (sucres en C5 et C6) contenus dans la biomasse lignocellulosique, ayant des cycles furaniques dans sa structure polymère. Le travail présenté ici est centré essentiellement sur les questionnements de sécurité soulevés par la phase de développement du projet. De manière plus ciblée, des actions prioritaires ont été définies, à savoir l’obtention d’un premier profilage des risques à caractère physicochimique des humines, ainsi qu’une première évaluation des risques des composés furaniques, lesquels constituent une famille de composés potentiellement très grande et représentent une voie encourageante vers le développement de nouveaux synthons au service d’une économie biosourcée. Les humines étant des résidus fatals, leur réutilisation sure et durable constitue aussi une étape stratégique dans le contexte de l’économie circulaire. De manière opérationnelle, le travail a compris les principaux axes de recherche suivants : • Revue bibliographique continue tout au long du travail de thèse concernant les humines, les composés furaniques et les matériaux associés (polymères) en termes de données relatives à la sécurité et ayant conduit aux principales informations suivantes: o Rareté /absence d’études sur les dangers physiques des humines et nombres de composés furaniques, car ces produits sont souvent au premier stade de leur développement o Malgré une la disponibilité très limitée de données pertinentes sur la sécurité, le constat est fait que les aspects de toxicité (par ingestion) sont le plus souvent le point focal des études, au détriment de l’examen des dangers physiques.o Seuls quelques composés furaniques (ethers, esters) ont spécifiquement fait l’objet de l’étude de certaines caractérisations en lien avec la sécurité (par exemple en termes de stabilité thermique), dans le cas d’application comme composants biosourcés de carburants innovants o De nombreuses variables influent sur les caractéristiques des humines et notamment leur méthode de production : ce qui signifie que les résultats obtenus sur les humines dans le cadre de ce projet (une seule source d’approvisionnement) mériteraient des travaux de consolidation dans le futur • Développements analytiques intégrant un premier examen de la distribution des points d’éclair en fonction des chaleurs de combustion des composés furaniques et une analyse des chaleurs de combustion de ces mêmes composés furaniques.The present research work was integrated as part of the EU-funded project named HUGS (HUmins as Green and Sustainable precursors for eco-friendly building blocks and materials), involving 5 main partners (Institut national de l'environnement industriel et des risques - France, Avantium - the Netherlands, Institut de Chimie de Nice - France, Universidad De Cordoba- Spain and Leibniz - Institut Fur Katalyse Ev An Der Universitat Rostock- Germany). The project is essentially supported through five European Industrial Doctorate fellowships put in place when the HUGS-MSCA-ITN-2015 program was launched in 2016. The primary objective of the HUGS project was to explore several valorization pathways of so-called “humins” in order to add value and create better business cases. Humins (and similarly lignins) are the side products that may become low-cost feedstock resulting from a number of future biorefineries and sugar conversion processes. Humins are complex residues resulting from the Acid-Catalyzed Dehydration and condensation of sugars, having furan-rings in their polymeric structures. The work presented in this specific part of the HUGS project is essentially focusing on safety-related topics of all components and subsequent applications related to sugar dehydration technology. Priority actions were devoted to a first insight on the characterization of physicochemical safety profiles of the side-product humins and main (parent) furanic products. Some members of this large family of compounds (e.g. RMF and FDCA) have high volume potential which results in opening new doors towards the development of furanbased building blocks and a bio-based economy. Humins are residues or side products which can be burnt for energy. However, its safe and sustainable use in high-value applications could also become a key milestone in the so-called circular economy. In practice, the work has been developed in two main locations: primarily at the INERIS lab, located in Verneuil-en-Halatte and at Avantium, located in Amsterdam. Nearly all experimental research after the production of the components at Avantium was performed at INERIS. This involved the evaluation of physicochemical hazards of both humins (crude industrial humins and humin foams obtained by thermal curing) and a series of furanic compounds. Avantium is involved in the commercialization of humins, furanics and furanic polymers/materials as novel chemicals and materials. The work has encompassed: An extensive bibliographical review of humins, furanics, and their related products (polymers, composites) resulted in the following main conclusions o A lack of physicochemical safety-oriented studies for many furanic compounds and for humins was observed as these products are still in the early stage of development and only a few may be commercialized in the next 5 years.o Despite the limited availability of safety-related data, more studies on toxicity aspects have been conducted for a selected number of furanics than physicochemical safety-related aspects. o A few furanic family members that have been evaluated as biofuel components were found to have given better emphasis on addressing some physicochemical safety attributes. o Every modification of the process for acid-catalyzed sugar dehydration (such as solvent, temperature, residence time and sugar concentration) will result in different humins, which would certainly demand further characterization and safety profiling of the resulting humins. • Analytical development integrating the first examination of flash point distribution versus the Net Heating Values, and analysis of total heats of combustion of furanic compounds. • Design and development of experimental plan addressing the safety-related key parameters such as thermal stability, self-heating risks, fire-risk-assessment and flammability limits depending on the need for specific tests and availability of the test samples

    Hydrolysis of Hemicellulose and Derivatives—A Review of Recent Advances in the Production of Furfural

    No full text
    Biobased production of furfural has been known for decades. Nevertheless, bioeconomy and circular economy concepts is much more recent and has motivated a regain of interest of dedicated research to improve production modes and expand potential uses. Accordingly, this review paper aims essentially at outlining recent breakthroughs obtained in the field of furfural production from sugars and polysaccharides feedstocks. The review discusses advances obtained in major production pathways recently explored splitting in the following categories: (i) non-catalytic routes like use of critical solvents or hot water pretreatment, (ii) use of various homogeneous catalysts like mineral or organic acids, metal salts or ionic liquids, (iii) feedstock dehydration making use of various solid acid catalysts; (iv) feedstock dehydration making use of supported catalysts, (v) other heterogeneous catalytic routes. The paper also briefly overviews current understanding of furfural chemical synthesis and its underpinning mechanism as well as safety issues pertaining to the substance. Eventually, some remaining research topics are put in perspective for further optimization of biobased furfural production

    Learning on safety issues pertaining to furanics as new intermediates from natural furan based byproducts

    No full text
    Production of new carbon-based building blocks from lignocellulosic biomass residues is progressively replacing share of petroleum based chemicals in transportation fuel and commodity polymers. Chemicals such as 5-hydroxymethylfurfural (HMF) and furfural can be produced by depolymerisation of C6-sugars (eg. glucose) and C5-sugars (eg. xylose), via acid catalysed dehydration (ACD). This can be further converted into various furanic derivatives (FD) such as 2,5-furandicarboxylic acid (FDCA) or furfuryl alcohol (FA), which are well-known precursors of bio-based polymers. Considering the diversity of existing and potential FD structures and their varying phys-chem properties (Fig a), we may anticipate several types of risks that may trigger during their synthesis and targeted applications and may have highly varying profiles. Except for a few well-known FD (furan, furfural, furfuryl alcohol, hydroxymethylfurfural etc), others have been paid much less attention so far, with no specific information on their hazardous profile in internationally derived haz-mat classification systems such as GHS (CLP in the EU) and the UN TDG Model Regulations for transport of dangerous goods. Haz-mat classifications are one of the preliminary requirements for all chemicals for their appropriate classification, labelling, packaging and safe transportation. However, these classifications do not necessarily provide information about the extent of risk involved when the chemical is used in any specific application. The risk involved may also depend on thermal stability of the compound, speed of combustion, chemical incompatibility issues, type of surrounding environment, conventional methods of storage and disposal, safety training to the employees, etc., These are some of the governing factors that are out of the scope of any haz-mat classification system and they can only be addressed by application based testing. Therefore, to address these existing discrepancies and to meet the new market requirements, the current study as part of the HUGS project focuses on examining the safety profile of existing and some newly synthesized FD, and their byproducts such as humins & levulinic acid. Specific focus is given on learning their thermal stability, flammability or combustion behavior during fire scenarios via various testing procedures. Thus, the study aims at defining specific trends of physico-chemical properties for the family of FD for the selection of best-suitable compound based on its functionality and applications

    Safety considerations of furanic compounds from an industrial safety point of view - an integrated biorefinery approach

    No full text
    The European Union?s approach of replacing progressively fossil sources by other renewable sources to support the transportation fuel and production of commodity polymers is one significant driver of the bio-economy. Today?s research is focusing more on faster and effective sustainable biomass conversion techniques with successful attempts resulting in producing new versatile carbon-based building blocks from lignocellulosic biomass residues. Chemicals such as 5-hydroxymethylfurfural (HMF) and furfural can be produced by the dehydration of cellulosic and hemicellulosic fractions to extract C5 and C6 sugars which can be further converted into various furanic derivatives (FD) such as 2,5-furandicarboxylic acid (FDCA) or furfuryl alcohol (FA), which are well-known precursors of bio-based polymers [1]?[3]. Owing to the wide variety of phys-chem properties, and wide diversity of existing and potential FD structures (fig.1), one can anticipate risk profiles may be triggered and can highly vary during their synthesis and targeted applications. First order about hazards pertaining to marketed chemicals can be obtained from various haz-mat classification systems as those derived internationally from the (GHS) (like CLP regulation in the EU) and from the UN TDG Model Regulations for the transport of dangerous goods [4], [5]. However, except for a few well known FD (such as furan, furfural, furfuryl alcohol, hydroxymethylfurfural etc), these regulations have limited interest as in most cases, no harmonized classification or UN number have been given to FD. Moreover, access to Material Safety Data Sheets (MSDS) where hazard rating must be done as a duty of the supplier are only available when the FD of interest has already been put on the market. Besides, use of conventions in those haz-mat classifications leads very often to misleading messages when the threshold value for a given hazard is not reached. For instance, qualifying a compound as ?non-flammable? is misleading to some extent. Similar to most ionic liquids, many FD (furfural FP 60 0C) does not enter the class of flammable liquids, due to their flash point (FP) position compared to limits defined by regulatory frameworks (eg. flammable substances have a flash point ?60 °C in the CLP) [6]. Depending on the context of use, compounds that are not identified as ?dangerous? may still induce flammable, corrosive, oxidative, toxic and eco-toxic issues [7], meaning that these classifications are set by pure convention (fig.2). In addition, thermal stability, speed of combustion, type of surrounding environment, conventional methods of storage and disposal, safety training to the employees, etc., are some of the governing factors that have to be considered in further evaluation of risk at use beyond haz-mat classification. Growing research, innovation in the field of biomass conversion processes is leading to synthesis of brand new FD which raise the need of providing holistic safety assessment. To meet the new market requirements and to resolve some of the above mentioned discrepancies, there is a need for careful examination of the potential risks associated in the family of FD. The current study is part of the HUGS project [8] and focuses on examining the safety profile of existing and some newly synthesized FD, while safety aspects of humins & and other derivatives like levulenic acid will also be taken into account. Specific focus is given on learning their thermal stability, flammability, or combustion behavior during fire scenarios, via fire propagation apparatus & flash point tests. The study aims at identifying and defining specific trends of physico-chemical properties of the family of FD thus developing knowledge to choose the best-suitable compound based on its functionality and applications while integrating economics and sustainability

    First order safety insights on furanic platform chemicals and their side streams

    No full text
    Furanic platform chemicals have recently gained renewed attention due to their production capability from bio-based sources including lignocellulosic residues, the reuse of which is highly encouraged by the promotion of a circular economy. Apart from lignins, humins, another side-stream residue generated during the acid-catalysed dehydration of C6 and C5 sugars to produce furanic monomers, is currently receiving attention as a renewable carbon source. Plenty of efforts are seen towards application development for these furanics-based chemicals and materials. Nevertheless, safety oriented data or information on these materials is scarce and this may hinder the market for new products made out of these chemicals/materials. To compliment this, the current study specifically focuses on the fire risk assessment of humins and many other furanic compounds of commercial interest. The study aims at generating safety-oriented data which may assist the user to understand the anticipated risk profiles for making a fair decision on their selection for the desired application

    Promoting safety in innovative and sustainable biomass value chains

    No full text
    The development of the so-called bio-economy, replacing « black gold » by « green gold » towards industrial ecology as well as the promotion of the circular economy lead to consider wastes and biomass residues of different sources as new and valuable feedstocks. This global context requires a new paradigm in the way we should tackle the issue of material and process safety in advanced biorefineries. This was recently debated in a wokshop organized by DG Research [1] where safety consideration was pointed out as deserving dedicated research in this area. In addition, adequate safety management strategy implemented at early design stage was also perceived as a contributing factor of sustainability and societal acceptance of industry. Based on recently completed or on-going projects like Imidazolium or Evalbioraf (SAS Pivert), HUGS, ALFA-BIRD, ZELCOR, GREENLAND, FLEDGED (EU FP7 & H2020 programmes) or CORABIO (CR Picardy), the presentation will examplify key issues that needs to be considered towards proactive material hazard characterization or process safety in this sector. Final goal of the presentation is ultimately to explain the attendees how to move from conventional risk analysis and simple compliance to existing safety focused regulations towards advanced integration of safety management as a key and measurable sustainability aspect in the context of biorefining. Among material-focused safety issues, the cases of alternative solvents or green solvents like « ionic liquids » (Fig. 1a) [2] or deep eutectic solvents (Fig. 1b) or biofuels will be pointed out to show about ignored or underscored safety issues or on misleading data regarding their fire behaviour at large scale (fuel ethanol). The importance of revisiting self-heating behaviour (see Fig.2) and other safety related issues all along innovative value chains with biobased feedstock [3] will also be outlined with an insight on biobased residues like biomass materials issuing from phytoremediation of polluted soils. The emerging interest on furan derivatives since new biobased routes of productions were shown promising will also been commented in terms of new needs to dig in the relating safety issues. Even more rarely investigated in recent research [4/5], safety aspects mostly addressing the process side (preatreatment, conversion, downprocessing, emission abatement) will be the latter part of the presentation covering key aspects of biorefining as : a) biological conversion processes and « accidental » biological risks, b) upstream and downstream flexibility demand versus safety , c) process intensification and inherently safer design (ISD) potentially antagonistic aspects [6], d) safety issues pertaining to process water, thermal and carbon streams recycling or to process integration, e) hazards pertaining to zero waste and energy self-sufficient targets), f) Corrosive environment problems as compared to classical refineries. This latter issue at frontier of product and process safety will also be debated at light of existing new hazardous property « corrosive to metal » recently introduced in CLP Regulation 1272/2008/EC and findings from the ECORBIO project. Eventually, the interest to link the safety approach and the evaluation of the environmental impacts of biobased processes will be also discussed

    Maîtriser les risques technologiques pour garantir la durabilité des bioraffineries avancée : quelques points de vigilance

    No full text
    La bioraffinerie avancée est multifacette et est annoncée comme le futur pilier (comme l’est la raffinerie de pétrole pour la chimie conventionnelle) du développement de la bio-économie partout dans le monde et deviendra un outil industriel de référence en France dont les atouts dans ce domaine sont nombreux au regard du potentiel d’agro-ressources et de résidus biosourcés mobilisable sur le plan national.C’est dans cette logique d’ailleurs que se sont mis en place il y a maintenant plus de 10 ans le pôle de compétitivité à vocation internationale IAR (Industries et agro-ressources) et plus récemment le projet PIVERT et son programme de recherche dénommé GENESYS qui promeuvent activement ce nouveau concept. Si l’attention a très tôt été attirée sur la nécessité de vérifier très en amont la durabilité des filières de bioraffineries, mise en question très rapidement lors de la promotion des bioraffineries de première génération centrées sur la production des biocarburants de type bioéthanol et biodiesel, une attention encore très limitée est portée sur la question de la maitrise des risques technologiques, malgré quelques travaux faisant état d’une accidentologie sur tout le cycle de vie des productions de ces premières filières. Cette présentation a pour but de montrer l’importance d’une prise en compte de la réflexion « sécurité » et des risques environnementaux le plus en amont possible de l’industrialisation de ces bioraffineries avancées en devenir, à la lumière des premiers travaux menés par l’INERIS dans le cadre de ses activités de recherche.Cette analyse met notamment en avant les points de vigilance à la fois au niveau des procédés et également des facteurs humains et organisationnels à associer à l’analyse de la durabilité et à la gestion de l’innovation lors de la conception de nouvelles filières de bioraffinages. Parmi ces points de vigilance, seront notamment abordés les aspects suivants - Différences entre raffinage conventionnel et bioraffinage - Gestion des problématiques de corrosion, en prenant en compte les signaux faibles - Gestion de l’innovation au regard de l’intensification des procédés et au regard de l’utilisation des nouveaux « solvants verts » et de nouvelles plateformes moléculaires (ex. : composés furaniques), se traduisant par des problématiques organisationnelles de passage des étapes pilotes à l’exploitation - Exigence de flexibilité en termes de valorisation des intrants, des produits formulés et du taux d’appel (par rapport au régime nominal) - Intégration matière et énergétique - Complexité et variabilité des organisations et des infrastructures, dont des problématiques d’interfaces homme-machines, de retour d’expérience au sein d’organisations potentiellement en réseaux (e.g., sous-traitance) ainsi que contrôle par les autorités - Liens entre gestion des risques technologiques et maitrise des rejets et des impacts environnementaux

    Humins in the environment: early stage insights on ecotoxicological aspects

    No full text
    International audienceWith the growing interest of a circular economy, the use of lignocellulosic residues such as lignins and humins as potential renewable feedstock for biorefining processes looks more and more promising. With humins, many challenges are still remaining for their sustainable use, starting from the need of providing reference data reflecting actual usable feedstocks of such materials. With this perspective, this paper offers a first outlook on the potential environmental fate of those materials and components, all related to furanics, a family of compounds for which toxicity is still a matter of debate. During the assessment, the conventional OECD ecotoxicity and biodegradability tests demanded by the European REACH regulation for a primary evaluation of environmental hazards were performed in combination with fish immunomarker tests to study the possible long-term effects on aquatic ecosystems. These first results are promising as humins did not exhibit any immediate ecotoxicological concerns and hence would allow considering their use in environmental-friendly applications
    corecore