668 research outputs found
Assembling strategies in extrinsic evolvable hardware with bi-directional incremental evolution
Bidirectional incremental evolution (BIE) has been proposed as a technique to overcome the ”stalling” effect in evolvable hardware applications. However preliminary results show perceptible dependence of performance of BIE and quality of evaluated circuit on assembling strategy applied during reverse stage of incremental evolution. The purpose of this paper is to develop assembling strategy that will assist BIE to produce relatively optimal solution with minimal computational effort (e.g. the minimal number of generations)
Near-infrared integral field spectroscopy of Massive Young Stellar Objects
We present medium resolution () -band integral field
spectroscopy of six MYSOs. The targets are selected from the RMS survey, and we
used the NIFS on the Gemini North telescope. The data show various spectral
line features including Br, CO, H, and \mbox{He\,{\sc i}}. The
Br line is detected in emission in all objects with
-- 200 kms. V645 Cyg shows a high-velocity
P-Cygni profile between -800 kms and -300 kms. We performed
three-dimensional spectroastrometry to diagnose the circumstellar environment
in the vicinity of the central stars using the Br line. We measured the
centroids of the velocity components with sub-mas precision. The centroids
allow us to discriminate the blueshifted and redshifted components in a roughly
east--west direction in both IRAS 18151--1208 and S106 in Br. This lies
almost perpendicular to observed larger scale outflows. We conclude, given the
widths of the lines and the orientation of the spectroastrometric signature,
that our results trace a disc wind in both IRAS 18151--1208 and S106. The CO
absorption lines at low transitions are detected in IRAS
18151--1208 and AFGL 2136. We analysed the velocity structure of the neutral
gas discs. In IRAS 18151--1208, the absorption centroids of the blueshifted and
redshifted components are separated in a direction of north-east to south-west,
nearly perpendicular to that of the larger scale jet. The
position-velocity relations of these objects can be reproduced with central
masses of 30 M_{\sun} for IRAS 18151--1208 and 20 M_{\sun} for AFGL 2136.
We also detect CO bandhead emission in IRAS 18151--1208, S106 and
V645 Cyg. The results can be fitted reasonably with a Keplerian rotation model,
with masses of 15, 20 and 20 M_{\sun} respectively.Comment: 17 pages, 10 figures, accepted by MNRA
Effect of Spin-Orbit Interaction in Spin-Triplet Superconductor: Structure of -vector and Anomalous O-NQR Relaxation in SrRuO
Supposing the spin-triplet superconducting state of SrRuO, the
spin-orbit (SO) coupling associated with relative motion in Cooper pairs is
calculated by extending the method for the dipole-dipole coupling given by
Leggett in the superfluid He. It is shown that the SO coupling works only
in the equal-spin pairing (ESP) state to make the pair angular momentum
and the pair spin angular momentum parallel with each other. The SO coupling gives rise to the internal
Josephson effect in a chiral ESP state as in superfluid A-phase of He with
a help of an additional anisotropy arising from SO coupling of atomic origin
which works to direct the {\bf d}-vector into -plane. This resolves the
problem of the anomalous relaxation of O-NQR and the structure of {\bf
d}-vector in SrRuO.Comment: Accepted for publication in J. Phys. Soc. Jpn. vol.79 (2010), No.2
(February issue); 18 pages, 2 figure
Interplay of Spin-Orbit Interaction and Electron Correlation on the Van Vleck Susceptibility in Transition Metal Compounds
We have studied the effects of electron correlation on Van Vleck
susceptibility () in transition metal compounds. A typical
crossover behavior is found for the correlation effect on as
sweeping spin-orbit interaction, . For a small , orbital
fluctuation plays a dominant role in the correlation enhancement of
; however, the enhancement rate is rather small. In contrast,
for an intermediate , shows a substantial increase,
accompanied by the development of spin fluctuation. We will discuss the
behavior of in association with the results of Knight-shift
experiments on SrRuO and an anomalously large magnetic susceptibility
observed for Ir compounds.Comment: 5 pages, 3 figures, to appear in J. Phys. Soc. Jp
Near-infrared polarimetric study of the bipolar nebula IRAS 19312+1950
We obtained H-band polarimetric data of IRAS 19312+1950 using the
near-infrared camera (CIAO) on the 8 m Subaru telescope. In order to
investigate the physical properties of the central star and the nebula, we
performed dust radiative transfer modeling and compared the model results with
the observed spectral energy distributions (SEDs), the radial profiles of the
total intensity image, and the fraction of linear polarization map. The total
intensity image shows a nearly spherical core with ~3" radius, an S-shaped arm
extending ~10" in the northwest to southeast direction, and an extended lobe
towards the southwest. The polarization map shows a centro-symmetric vector
alignment in almost the entire nebula and low polarizations along the S-shaped
arm. These results suggest that the nebula is accompanied by a central star,
and the S-shaped arm has a physically ring-like structure. From our radiative
transfer modeling, we estimated the stellar temperature, the bolometric
luminosity, and the current mass-loss rate to be 2800 K, 7000 L_sun, and
5.3x10^{-6} M_sun yr^{-1}, respectively. Taking into account previous
observational results, such as the detection of SiO maser emissions and
silicate absorption feature in the 10 m spectrum, our dust radiative
transfer analysis based on our NIR imaging polarimetry suggests that (1) the
central star of IRAS 19312+1950 is likely to be an oxygen-rich, dust-enshrouded
AGB star and (2) most of the circumstellar material originates from other
sources (e.g. ambient dark clouds) rather than as a result of mass loss from
the central star.Comment: 8 pages with 4 figure
Cold-induced RNA-binding proteins regulate circadian gene expression by controlling alternative polyadenylation
The body temperature is considered a universal cue by which the master clock synchronizes the peripheral clocks in mammals, but the mechanism is not fully understood. Here we identified two cold-induced RNA-binding proteins (RBPs), Cirbp and Rbm3, as important regulators for the temperature entrained circadian gene expression. The depletion of Cirbp or Rbm3 significantly reduced the amplitudes of core circadian genes. PAR-CLIP analyses showed that the 3'UTR binding sites of Cirbp and Rbm3 were significantly enriched near the polyadenylation sites (PASs). Furthermore, the depletion of Cirbp or Rbm3 shortened 3'UTR, whereas low temperature (upregulating Cirbp and Rbm3) lengthened 3'UTR. Remarkably, we found that they repressed the usage of proximal PASs by binding to the common 3'UTR, and many cases of proximal/distal PAS selection regulated by them showed strong circadian oscillations. Our results suggested that Cirbp and Rbm3 regulated the circadian gene expression by controlling alternative polyadenylation (APA)
- …