240 research outputs found

    A stochastic simulation of the propagation of Galactic cosmic rays reflecting the discreteness of cosmic ray sources. Age and path length distribution

    Full text link
    The path length distribution of Galactic cosmic rays (GCRs) is the fundamental ingredient for modeling the propagation process of GCRs based on the so-called weighted slab method. We try to derive this distribution numerically by taking into account the discreteness in both space and time of occurrences of supernova explosions where GCRs are suspected to be born. We solve numerically the stochastic differential equations equivalent to the Parker diffusion-convection equation which describes the propagation process of GCR in the Galaxy. We assume the three-dimensional diffusion is an isotropic one without any free escape boundaries. We ignore any energy change of GCRs and the existence of the Galactic wind for simplicity. We also assume axisymmetric configurations for the density distributions of the interstellar matter and for the surface density of supernovae. We have calculated age and path length of GCR protons arriving at the solar system with this stochastic method. The obtained age is not the escape time of GCRs from the Galaxy as usually assumed, but the time spent by GCRs during their journey to the solar system from the supernova remnants where they were born. The derived age and path length show a distribution spread in a wide range even for GCR protons arriving at the solar system with the same energy. The distributions show a cut-off at a lower range in age or path length depending on the energy of GCRs. These cut-offs clearly come from the discreteness of occurrence of supernovae. The mean age of GeV particles obtained from the distributions is consistent with the age obtained by direct observation of radioactive secondary nuclei. The energy dependence of the B/C ratio estimated with the path length distribution reproduces reliably the energy dependence of B/C obtained by recent observations in space.Comment: 5 pages, 5 figures. Accepted for publication in A&

    Emission from Bow Shocks of Beamed Gamma-Ray Bursts

    Get PDF
    Beamed gamma-ray burst (GRB) sources produce a bow shock in their gaseous environment. The emitted flux from this bow shock may dominate over the direct emission from the jet for lines of sight which are outside the angular radius of the jet emission, theta. The event rate for these lines of sight is increased by a factor of 260*(theta/5_degrees)^{-2}. For typical GRB parameters, we find that the bow shock emission from a jet with half-angle of about 5 degrees is visible out to tens of Mpc in the radio and hundreds of Mpc in the X-rays. If GRBs are linked to supernovae, studies of peculiar supernovae in the local universe should reveal this non-thermal bow shock emission for weeks to months following the explosion.Comment: ApJ, submitted, 15 pages, 3 figure

    Fine Structures of Shock of SN 1006 with the Chandra Observation

    Get PDF
    The north east shell of SN 1006 is the most probable acceleration site of high energy electrons (up to ~ 100 TeV) with the Fermi acceleration mechanism at the shock front. We resolved non-thermal filaments from thermal emission in the shell with the excellent spatial resolution of Chandra. The thermal component is extended widely over about ~ 100 arcsec (about 1 pc at 1.8 kpc distance) in width, consistent with the shock width derived from the Sedov solution. The spectrum is fitted with a thin thermal plasma of kT = 0.24 keV in non-equilibrium ionization (NEI), typical for a young SNR. The non-thermal filaments are likely thin sheets with the scale widths of ~ 4 arcsec (0.04 pc) and ~ 20 arcsec (0.2 pc) at upstream and downstream, respectively. The spectra of the filaments are fitted with a power-law function of index 2.1--2.3, with no significant variation from position to position. In a standard diffusive shock acceleration (DSA) model, the extremely small scale length in upstream requires the magnetic field nearly perpendicular to the shock normal. The injection efficiency (eta) from thermal to non-thermal electrons around the shock front is estimated to be ~ 1e-3 under the assumption that the magnetic field in upstream is 10 micro G. In the filaments, the energy densities of the magnetic field and non-thermal electrons are similar to each other, and both are slightly smaller than that of thermal electrons. in the same order for each other. These results suggest that the acceleration occur in more compact region with larger efficiency than previous studies.Comment: 24 pages, 11 figures, Accepted for publication in ApJ, the paper with full resolution images in http://www-cr.scphys.kyoto-u.ac.jp/member/bamba/Paper/SN1006.pd

    Diffuse Hard X-ray Sources Discovered with the ASCA Galactic Plane Survey

    Full text link
    We found diffuse hard X-ray sources, G11.0+0.0, G25.5+0.0, and G26.6-0.1 in the ASCA Galactic plane survey data. The X-ray spectra are featureless with no emission line, and are fitted with both models of a thin thermal plasma in non-equilibrium ionization and a power-law function. The source distances are estimated to be 1-8 kpc, using the best-fit NH values on the assumption that the mean density in the line of sight is 1 H cm^-3. The source sizes and luminosities are then 4.5-27 pc and (0.8-23)x10^33 ergs/s. Although the source sizes are typical to supernova remnants (SNR) with young to intermediate ages, the X-ray luminosity, plasma temperature, and weak emission lines in the spectra are all unusual. This suggests that these objects are either shell-like SNRs dominated by X-ray synchrotron emission, like SN 1006, or, alternatively, plerionic SNRs. The total number of these classes of SNRs in our Galaxy is also estimated.Comment: 17 pages, 9 figures; to appear in Ap

    The multi-band nonthermal emission from the supernova remnant RX J1713.7-3946

    Full text link
    Nonthermal X-rays and very high-energy (VHE) γ\gamma-rays have been detected from the supernova remnant (SNR) RX J1713.7-3946, and especially the recent observations with the \textit{Suzaku} satellite clearly reveal a spectral cutoff in the X-ray spectrum, which directly relates to the cutoff of the energy spectrum of the parent electrons. However, whether the origin of the VHE γ\gamma-rays from the SNR is hadronic or leptonic is still in debate. We studied the multi-band nonthermal emission from RX J1713.7-3946 based on a semi-analytical approach to the nonlinear shock acceleration process by including the contribution of the accelerated electrons to the nonthermal radiation. The results show that the multi-band observations on RX J1713.7-3946 can be well explained in the model with appropriate parameters and the TeV γ\gamma-rays have hadronic origin, i.e., they are produced via proton-proton (p-p) interactions as the relativistic protons accelerated at the shock collide with the ambient matter.Comment: 6 pages, 5 figures, accepted by MNRA

    Astrophysical Neutrino Event Rates and Sensitivity for Neutrino Telescopes

    Get PDF
    Spectacular processes in astrophysical sites produce high-energy cosmic rays which are further accelerated by Fermi-shocks into a power-law spectrum. These, in passing through radiation fields and matter, produce neutrinos. Neutrino telescopes are designed with large detection volumes to observe such astrophysical sources. A large volume is necessary because the fluxes and cross-sections are small. We estimate various telescopes' sensitivities and expected event rates from astrophysical sources of high-energy neutrinos. We find that an ideal detector of km^2 incident area can be sensitive to a flux of neutrinos integrated over energy from 10^5 and 10^{7} GeV as low as 1.3 * 10^(-8) * E^(-2) (GeV/cm^2 s sr) which is three times smaller than the Waxman-Bachall conservative upper limit on potential neutrino flux. A real detector will have degraded performance. Detection from known point sources is possible but unlikely unless there is prior knowledge of the source location and neutrino arrival time.Comment: Section added +modification

    The Identification of Infrared Synchrotron Radiation from Cassiopeia A

    Full text link
    We report the discovery of polarized flux at 2.2 micron from the bright shell of the approximately 320 year old supernova remnant Cas A. The fractional polarizations are comparable at 6 cm and 2.2 micron, and the polarization angles are similar, demonstrating that synchrotron radiation from the same relativistic plasma is being observed at these widely separated wavebands. The relativistic electrons radiating at 2.2 micron have an energy of ~ 150 GeV, (gamma ~ 3e5), assuming an ~500 microGauss magnetic field. The total intensity at 2.2 micron lies close to the power law extrapolation from radio frequencies, showing that relativistic particle acceleration is likely an ongoing process; the infrared emitting electrons were accelerated no longer than ~80 years ago. There is a small but significant concave curvature to the spectrum, as expected if the accelerating shocks have been modified by the back pressure of the cosmic rays; given calibration uncertainties, this conclusion must be considered tentative at present. The 2.2 micron polarization angles and the emission-line filaments observed by HST are both offset from the local radial direction by 10 - 20 degrees, providing evidence that the magnetic fields in Cas A are generated by Rayleigh-Taylor instabilities in the decelerating ejecta.Comment: 11 pages, 3 figures, accepted for publication Ap

    In which shell-type SNRs should we look for gamma-rays and neutrinos from p-p collisions?

    Full text link
    We present a simple analytic model for the various contributions to the non-thermal emission from shell type SNRs, and show that this model's results reproduce well the results of previous detailed calculations. We show that the \geq 1 TeV gamma ray emission from the shell type SNRs RX J1713.7-3946 and RX J0852.0-4622 is dominated by inverse-Compton scattering of CMB photons (and possibly infra-red ambient photons) by accelerated electrons. Pion decay (due to proton-proton collisions) is shown to account for only a small fraction, \lesssim10^-2, of the observed flux, as assuming a larger fractional contribution would imply nonthermal radio and X-ray synchrotron emission and thermal X-ray Bremsstrahlung emission that far exceed the observed radio and X-ray fluxes. Models where pion decay dominates the \geq 1 TeV flux avoid the implied excessive synchrotron emission (but not the implied excessive thermal X-ray Bremsstrahlung emission) by assuming an extremely low efficiency of electron acceleration, K_ep \lesssim 10^-4 (K_ep is the ratio of the number of accelerated electrons and the number of accelerated protons at a given energy). We argue that observations of SNRs in nearby galaxies imply a lower limit of K_ep \gtrsim 10^-3, and thus rule out K_ep values \lesssim 10^-4 (assuming that SNRs share a common typical value of K_ep). It is suggested that SNRs with strong thermal X-ray emission, rather than strong non-thermal X-ray emission, are more suitable candidates for searches of gamma rays and neutrinos resulting from proton-proton collisions. In particular, it is shown that the neutrino flux from the SNRs above is probably too low to be detected by current and planned neutrino observatories (Abridged).Comment: 13 pages, 1 figure, accepted for publication in JCAP, minor revision

    Evidence of TeV gamma-ray emission from the nearby starburst galaxy NGC 253

    Full text link
    TeV gamma-rays were recently detected from the nearby normal spiral galaxy NGC 253 (Itoh et al., 2002). Observations to detect the Cherenkov light images initiated by gamma-rays from the direction of NGC 253 were carried out in 2000 and 2001 over a total period of \sim150 hours. The orientation of images in gamma-ray--like events is not consistent with emission from a point source, and the emission region corresponds to a size greater than 10 kpc in radius. Here, detailed descriptions of the analysis procedures and techniques are given.Comment: 16 pages, 27 figures, aa.cl
    corecore