20 research outputs found

    Removal of Alkylphenols from Industrial and Municipal Wastewater

    Get PDF
    The results of the study of removal of nonylphenol, octylphenol and their ethoxylates from real industrial and municipal wastewater are presented. Industrial wastewater was pre-treated by coagulation with FeCl3 and adsorption on zeolite, before discharging into municipal sewer system. Their removal efficiencies in primary sedimentation tank of municipal WWTP were very low. From the practical point of view, the highest and the most significant removal efficiencies within the whole WWTP were observed for nonylphenol and nonylphenol ethoxylates. Dominancy of abiotic mechanisms of alkylphenols removal follows from adsorption measurements. Activated sludge cultivated in lab-scale extended aeration tank accounted for relatively high adsorption affinity to these substances. Activated sludge sampled from municipal wastewater treatment plant (MWWTP) receiving industrial wastewater containing alkylphenols accounted for very low adsorption affinity to these pollutants. Significantly higher removal efficiency of octylphenol ethoxylates was observed with the O3/granular active carbon (GAC) process compared to the ozonation process alone. Lower toxicity impact of intermediates and products of ozonation treatment on Vibrio fischeri was measured in comparison to the O3/GAC process. Actually, the municipal WWTP effluent discharge concentration values complies with EQS values, including nonylphenols. This work is licensed under a Creative Commons Attribution 4.0 International License

    PFAS levels and determinants of variability in exposure in European teenagers - Results from the HBM4EU aligned studies (2014-2021)

    Get PDF
    Background: Perfluoroalkyl substances (PFAS) are man-made fluorinated chemicals, widely used in various types of consumer products, resulting in their omnipresence in human populations. The aim of this study was to describe current PFAS levels in European teenagers and to investigate the determinants of serum/plasma concentrations in this specific age group. Methods: PFAS concentrations were determined in serum or plasma samples from 1957 teenagers (12-18 years) from 9 European countries as part of the HBM4EU aligned studies (2014-2021). Questionnaire data were post-harmonized by each study and quality checked centrally. Only PFAS with an overall quantification frequency of at least 60% (PFOS, PFOA, PFHxS and PFNA) were included in the analyses. Sociodemographic and lifestyle factors were analysed together with food consumption frequencies to identify determinants of PFAS exposure. The variables study, sex and the highest educational level of household were included as fixed factors in the multivariable linear regression models for all PFAS and each dietary variable was added to the fixed model one by one and for each PFAS separately. Results: The European exposure values for PFAS were reported as geometric means with 95% confidence intervals (CI): PFOS [2.13 μg/L (1.63-2.78)], PFOA ([0.97 μg/L (0.75-1.26)]), PFNA [0.30 μg/L (0.19-0.45)] and PFHxS [0.41 μg/L (0.33-0.52)]. The estimated geometric mean exposure levels were significantly higher in the North and West versus the South and East of Europe. Boys had significantly higher concentrations of the four PFAS compared to girls and significantly higher PFASs concentrations were found in teenagers from households with a higher education level. Consumption of seafood and fish at least 2 times per week was significantly associated with 21% (95% CI: 12-31%) increase in PFOS concentrations and 20% (95% CI: 10-31%) increase in PFNA concentrations as compared to less frequent consumption of seafood and fish. The same trend was observed for PFOA and PFHxS but not statistically significant. Consumption of eggs at least 2 times per week was associated with 11% (95% CI: 2-22%) and 14% (95% CI: 2-27%) increase in PFOS and PFNA concentrations, respectively, as compared to less frequent consumption of eggs. Significantly higher PFOS concentrations were observed for participants consuming offal (14% (95% CI: 3-26%)), the same trend was observed for the other PFAS but not statistically significant. Local food consumption at least 2 times per week was associated with 40% (95% CI: 19-64%) increase in PFOS levels as compared to those consuming local food less frequently. Conclusion: This work provides information about current levels of PFAS in European teenagers and potential dietary sources of exposure to PFAS in European teenagers. These results can be of use for targeted monitoring of PFAS in food.This work was supported by the European Union’s Horizon 2020 research and innovation programme under Grant agreement No 733032 HBM4EU (www.HBM4EU.eu), and received co-funding from the authors’ organizations: Riksmaten Adolescents: Riksmaten Adolescents was performed by the Swedish Food Agency with financial support from the Swedish Environmental Protection Agency and the Swedish Civil Contingencies Agency. NEB II: The Norwegian Institute of Public Health (NIPH) has contributed to funding of the Norwegian Environmental Biobank (NEB). The laboratory measurements have partly been funded by the Research Council of Norway through research projects (275903 and 268465) PCB cohort follow-up: PCB cohort follow-up received additional funding from the Ministry of Health of the Slovak Republic, program 07B0103. BEA: BEA study was funded by the Spanish Ministry of Agriculture, Fisheries and Food and the Instituto de Salud Carlos III (SEG 1321/15) SLO-CRP: The Slovenian SLO-CRP study was co-financed by the Jozef Stefan Institute program P1- 0143, and a national project “Exposure of children and adolescents to selected chemicals through their habitat environment” (grant agreement No. C2715-16-634802). CROME: CROME study was co-funded by the European Commission research funds of Horizon 2020. ESTEBAN: ESTEBAN study was funded by Santé Publique France and the French ministries of Health and the Environment. GerES V-sub: The funding of the German Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection is gratefully acknowledged. FLEHS IV: The Flemish Center of Expertise on Environment and Health is funded by the Government of Flanders, Department of Environment & Spatial Development.S

    Harmonization of human biomonitoring studies in Europe: characteristics of the HBM4EU-aligned studies participants

    Get PDF
    Human biomonitoring has become a pivotal tool for supporting chemicals' policies. It provides information on real-life human exposures and is increasingly used to prioritize chemicals of health concern and to evaluate the success of chemical policies. Europe has launched the ambitious REACH program in 2007 to improve the protection of human health and the environment. In October 2020 the EU commission published its new chemicals strategy for sustainability towards a toxic-free environment. The European Parliament called upon the commission to collect human biomonitoring data to support chemical's risk assessment and risk management. This manuscript describes the organization of the first HBM4EU-aligned studies that obtain comparable human biomonitoring (HBM) data of European citizens to monitor their internal exposure to environmental chemicals. The HBM4EU-aligned studies build on existing HBM capacity in Europe by aligning national or regional HBM studies. The HBM4EU-aligned studies focus on three age groups: children, teenagers, and adults. The participants are recruited between 2014 and 2021 in 11 to 12 primary sampling units that are geographically distributed across Europe. Urine samples are collected in all age groups, and blood samples are collected in children and teenagers. Auxiliary information on socio-demographics, lifestyle, health status, environment, and diet is collected using questionnaires. In total, biological samples from 3137 children aged 6-12 years are collected for the analysis of biomarkers for phthalates, HEXAMOLL((R)) DINCH, and flame retardants. Samples from 2950 teenagers aged 12-18 years are collected for the analysis of biomarkers for phthalates, Hexamoll((R)) DINCH, and per- and polyfluoroalkyl substances (PFASs), and samples from 3522 adults aged 20-39 years are collected for the analysis of cadmium, bisphenols, and metabolites of polyaromatic hydrocarbons (PAHs). The children's group consists of 50.4% boys and 49.5% girls, of which 44.1% live in cities, 29.0% live in towns/suburbs, and 26.8% live in rural areas. The teenagers' group includes 50.6% girls and 49.4% boys, with 37.7% of residents in cities, 31.2% in towns/suburbs, and 30.2% in rural areas. The adult group consists of 52.6% women and 47.4% men, 71.9% live in cities, 14.2% in towns/suburbs, and only 13.4% live in rural areas. The study population approaches the characteristics of the general European population based on age-matched EUROSTAT EU-28, 2017 data; however, individuals who obtained no to lower educational level (ISCED 0-2) are underrepresented. The data on internal human exposure to priority chemicals from this unique cohort will provide a baseline for Europe's strategy towards a non-toxic environment and challenges and recommendations to improve the sampling frame for future EU-wide HBM surveys are discussed

    Gestational weight gain charts for different body mass index groups for women in Europe, North America and Oceania

    Get PDF
    Background: Gestational weight gain differs according to pre-pregnancy body mass index and is related to the risks of adverse maternal and child health outcomes. Gestational weight gain charts for women in different pre-pregnancy body mass index groups enable identification of women and offspring at risk for adverse health outcomes. We aimed to construct gestational weight gain reference charts for underweight, normal weight, overweight, and grade 1, 2 and 3 obese women and compare these charts with those obtained in women with uncomplicated term pregnancies.Methods: We used individual participant data from 218,216 pregnant women participating in 33 cohorts from Europe, North America and Oceania. Of these women, 9,065 (4.2%), 148,697 (68.1%), 42,678 (19.6%), 13,084 (6.0%), 3,597 (1.6%), and 1,095 (0.5%) were underweight, normal weight, overweight, and grade 1, 2 and 3 obese women, respectively. A total of 138, 517 women from 26 cohorts had pregnancies with no hypertensive or diabetic disorders and with term deliveries of appropriate for gestational age at birth infants. Gestational weight gain charts for underweight, normal weight, overweight, and grade 1, 2 and 3 obese women were derived by the Box-Cox t method using the generalized additive model for location, scale and shape. Results: We observed that gestational weight gain strongly differed per maternal pre-pregnancy body mass index group. The median (interquartile range) gestational weight gain at 40 weeks was 14.2 kg (11.4-17.4) for underweight women, 14.5 kg (11.5-17.7) for normal weight women, 13.9 kg (10.1-17.9) for overweight women, and 11.2 kg (7.0-15.7), 8.7 kg (4.3-13.4) and 6.3 kg (1.9-11.1) for grade 1, 2 and 3 obese women, respectively. The rate of weight gain was lower in the first half than in the second half of pregnancy. No differences in the patterns of weight gain were observed between cohorts or countries. Similar weight gain patterns were observed in mothers without pregnancy complications.Conclusions: Gestational weight gain patterns are strongly related to pre-pregnancy body mass index. The derived charts can be used to assess gestational weight gain in etiological research and as a monitoring tool for weight gain during pregnancy in clinical practice
    corecore