124 research outputs found

    Research on the Geography of Agricultural Change: Redundant or Revitalized?

    Get PDF
    Future research directions for agricultural geography were the subject of debate in Area in the late 1980s. The subsequent application of political economy ideas undoubtedly revived interest in agricultural research. This paper argues that agricultural geography contains greater diversity than the dominant political economy discourse would suggest. It reviews ‘other’ areas of agricultural research on policy, post-productivism, people, culture and animals, presenting future suggestions for research. They should ensure that agricultural research continues revitalized rather than redundant into the next millennium

    Hyper-arid tall shrub species have differing long-term responses to browsing management

    Get PDF
    © 2019, © 2019 Taylor & Francis Group, LLC. Hyper-arid rangeland vegetation is typically dominated by large woody species which are often overlooked in herbivory studies. Long-term responses of tall shrub populations to herbivory change are poorly understood in the Arabian Peninsula. Population and size of 1559 individuals from four shrub species were assessed over an 11-year period under two herbivory regimes, one in which domestic livestock (camels) were replaced by semi-wild ungulates (Oryx and gazelles) before, and the other during, the study period. Each shrub species exhibited a different response to the change in herbivory. Populations of Calotropis procera decreased dramatically. Populations of both Calligonum polygonoides and Lycium shawii increased through sexual reproduction, but the spatial distribution of recruits indicated different modes of seed dispersal. Average lifespans were estimated at 22 and 20years respectively. The persistence strategy of Leptadenia pyrotechnica was similar to tree species of this habitat in that vegetative regrowth was prioritized over recruitment, and average lifespan was estimated at 95years. Shrub responses to changes in ungulate management are therefore species-specific. The response of individual plant size was faster than the response of population size, which was limited by slow sexual recruitment (L. pyrotechnica) or localized seed dispersal (C. polygonoides)

    An evaluation of sit to stand devices for use in rehabilitation

    Get PDF
    There are many assistive devices to help with raising a person from a seat. These devices are considered active as they require some balance, trunk control and weightbearing ability. There is concern that this movement is mostly passive due to fixation at the trunk and knee. This study explores the movement patterns in sit to stand transfers active and assisted. Study Design: A fully squared repeated measures design was use. All participants (n = 20) used all conditions (n = 7) in a balanced order. Transfers were recorded with; video recordings, a 6 dimensional force plate, hip, knee and ankle positions were recorded with motion capture. Subjective evaluations for comfort and security were completed. Physical data was compared with ANOVA calculations with Bonferroni corrections. Results: Device G scored highest for comfort, knee support and overall preference. Sling movement had a negative effect on the sensations of comfort and security. The motion analysis of the flexible knee support showed: People push into the floor and CoP moved towards the toe.More anterior knee movement (P < 0.05).More bodyweight through feet (P < 0.05).Quicker transfer of weight onto feet.Very low bodyweight was recorded in all lowering actions. The use of a flexible knee support raised the subjective and physical performance of the assistive device and may improve rehabilitation responses

    A Mathematical model for Astrocytes mediated LTP at Single Hippocampal Synapses

    Full text link
    Many contemporary studies have shown that astrocytes play a significant role in modulating both short and long form of synaptic plasticity. There are very few experimental models which elucidate the role of astrocyte over Long-term Potentiation (LTP). Recently, Perea & Araque (2007) demonstrated a role of astrocytes in induction of LTP at single hippocampal synapses. They suggested a purely pre-synaptic basis for induction of this N-methyl-D- Aspartate (NMDA) Receptor-independent LTP. Also, the mechanisms underlying this pre-synaptic induction were not investigated. Here, in this article, we propose a mathematical model for astrocyte modulated LTP which successfully emulates the experimental findings of Perea & Araque (2007). Our study suggests the role of retrograde messengers, possibly Nitric Oxide (NO), for this pre-synaptically modulated LTP.Comment: 51 pages, 15 figures, Journal of Computational Neuroscience (to appear

    How installers select and explain domestic heating controls

    Get PDF
    Though central heating controls have the potential to reduce the energy consumed through domestic space heating, their installation does not guarantee savings. End users do not always understand their controls, or operate them in an energy-efficient way, but there is little appreciation of why this is. Drawing on an ethnographic study, this paper investigates how installers select and explain central heating controls. With reference to the concept of technology scripting, which suggests that the assumptions made about users during the design of devices can influence their eventual use, it shows how heating installers also draw on certain user scripts. Through these means the paper illuminates the significant role that heating installers play in influencing the control products fitted into homes, and how they might be used. Though their use of these scripts is understandable, it is not always conducive to ensuring that central heating systems are operated in the most energy-efficient way. It is suggested that industry and policy-makers might engage with how installers understand users and revise current guidelines to foster better communication between them

    Regulation of Axonal HCN1 Trafficking in Perforant Path Involves Expression of Specific TRIP8b Isoforms

    Get PDF
    The functions of HCN channels in neurons depend critically on their subcellular localization, requiring fine-tuned machinery that regulates subcellular channel trafficking. Here we provide evidence that regulatory mechanisms governing axonal HCN channel trafficking involve association of the channels with specific isoforms of the auxiliary subunit TRIP8b. In the medial perforant path, which normally contains HCN1 channels in axon terminals in immature but not in adult rodents, we found axonal HCN1 significantly increased in adult mice lacking TRIP8b (TRIP8b−/−). Interestingly, adult mice harboring a mutation that results in expression of only the two most abundant TRIP8b isoforms (TRIP8b[1b/2]−/−) exhibited an HCN1 expression pattern similar to wildtype mice, suggesting that presence of one or both of these isoforms (TRIP8b(1a), TRIP8b(1a-4)) prevents HCN1 from being transported to medial perforant path axons in adult mice. Concordantly, expression analyses demonstrated a strong increase of expression of both TRIP8b isoforms in rat entorhinal cortex with age. However, when overexpressed in cultured entorhinal neurons of rats, TRIP8b(1a), but not TRIP8b(1a-4), altered substantially the subcellular distribution of HCN1 by promoting somatodendritic and reducing axonal expression of the channels. Taken together, we conclude that TRIP8b isoforms are important regulators of HCN1 trafficking in entorhinal neurons and that the alternatively-spliced isoform TRIP8b(1a) could be responsible for the age-dependent redistribution of HCN channels out of perforant path axon terminals

    Drosophila Uri, a PP1α binding protein, is essential for viability, maintenance of DNA integrity and normal transcriptional activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein phosphatase 1 (PP1) is involved in diverse cellular processes, and is targeted to substrates via interaction with many different protein binding partners. PP1 catalytic subunits (PP1c) fall into PP1α and PP1β subfamilies based on sequence analysis, however very few PP1c binding proteins have been demonstrated to discriminate between PP1α and PP1β.</p> <p>Results</p> <p>URI (unconventional prefoldin RPB5 interactor) is a conserved molecular chaperone implicated in a variety of cellular processes, including the transcriptional response to nutrient signalling and maintenance of DNA integrity. We show that <it>Drosophila </it>Uri binds PP1α with much higher affinity than PP1β, and that this ability to discriminate between PP1c forms is conserved to humans. Most Uri is cytoplasmic, however we found some protein associated with active RNAPII on chromatin. We generated a <it>uri </it>loss of function allele, and show that <it>uri </it>is essential for viability in <it>Drosophila</it>. <it>uri </it>mutants have transcriptional defects, reduced cell viability and differentiation in the germline, and accumulate DNA damage in their nuclei.</p> <p>Conclusion</p> <p>Uri is the first PP1α specific binding protein to be described in <it>Drosophila</it>. Uri protein plays a role in transcriptional regulation. Activity of <it>uri </it>is required to maintain DNA integrity and cell survival in normal development.</p

    Differential Proteomic Analysis of Mammalian Tissues Using SILAM

    Get PDF
    Differential expression of proteins between tissues underlies organ-specific functions. Under certain pathological conditions, this may also lead to tissue vulnerability. Furthermore, post-translational modifications exist between different cell types and pathological conditions. We employed SILAM (Stable Isotope Labeling in Mammals) combined with mass spectrometry to quantify the proteome between mammalian tissues. Using 15N labeled rat tissue, we quantified 3742 phosphorylated peptides in nuclear extracts from liver and brain tissue. Analysis of the phosphorylation sites revealed tissue specific kinase motifs. Although these tissues are quite different in their composition and function, more than 500 protein identifications were common to both tissues. Specifically, we identified an up-regulation in the brain of the phosphoprotein, ZFHX1B, in which a genetic deletion causes the neurological disorder Mowat–Wilson syndrome. Finally, pathway analysis revealed distinct nuclear pathways enriched in each tissue. Our findings provide a valuable resource as a starting point for further understanding of tissue specific gene regulation and demonstrate SILAM as a useful strategy for the differential proteomic analysis of mammalian tissues
    • …
    corecore