934 research outputs found

    Numerical simulation of heavy fermions in an SU(2)_L x SU(2)_R symmetric Yukawa model

    Full text link
    An exploratory numerical study of the influence of heavy fermion doublets on the mass of the Higgs boson is performed in the decoupling limit of a chiral SU(2)L⊗SU(2)R\rm SU(2)_L \otimes SU(2)_R symmetric Yukawa model with mirror fermions. The behaviour of fermion and boson masses is investigated at infinite bare quartic coupling on 43⋅84^3 \cdot 8, 63⋅126^3 \cdot 12 and 83⋅168^3 \cdot 16 lattices. A first estimate of the upper bound on the renormalized quartic coupling as a function of the renormalized Yukawa-coupling is given.Comment: 15 pp + 11 Figures appended as Postscript file

    Solution of Ordinary Differential Equations in Gradient-Based Multidisciplinary Design Optimization

    Get PDF
    A gradient-based approach to multidisciplinary design optimization enables efficient scalability to large numbers of design variables. However, the need for derivatives causes difficulties when integrating ordinary differential equations (ODEs) in models. To simplify this, we propose the use of the general linear methods framework, which unifies all Runge-Kutta and linear multistep methods. This approach enables rapid implementation of integration methods without the need to differentiate each one, even in a gradient-based optimization context. We also develop a new parallel time integration algorithm that enables vectorization across time steps. We present a set of benchmarking results using a stiff ODE, a non-stiff nonlinear ODE, and an orbital dynamics ODE, and compare integration methods. In a modular gradient-based multidisciplinary design optimization context, we find that the new parallel time integration algorithm with high-order implicit methods, especially Gauss-Legendre collocation, is the best choice for a broad range of problems

    A turbo-coded burst-by-burst adaptive wide-band speech transceiver

    Full text link

    The supersymmetric Ward identities on the lattice

    Get PDF
    Supersymmetric (SUSY) Ward identities are considered for the N=1 SU(2) SUSY Yang Mills theory discretized on the lattice with Wilson fermions (gluinos). They are used in order to compute non-perturbatively a subtracted gluino mass and the mixing coefficient of the SUSY current. The computations were performed at gauge coupling β\beta=2.3 and hopping parameter κ\kappa=0.1925, 0.194, 0.1955 using the two-step multi-bosonic dynamical-fermion algorithm. Our results are consistent with a scenario where the Ward identities are satisfied up to O(a) effects. The vanishing of the gluino mass occurs at a value of the hopping parameter which is not fully consistent with the estimate based on the chiral phase transition. This suggests that, although SUSY restoration appears to occur close to the continuum limit of the lattice theory, the results are still affected by significant systematic effects.Comment: 34 pages, 7 figures. Typo corrected, last sentence reformulated, reference added. To appear in Eur. Phys. J.

    Immunohistochemical Demonstration of IgG in Reed-Sternberg and Other Cells in Hodgkin\u27s Disease

    Get PDF
    Increased synthesis of IgG in vitro has been demonstrated in spleens from patients with Hodgkin\u27s disease, either with or without invasion of the organ by tumor (1). Interest in this laboratory has centered recently on cytochemical localization of immunoglobulins by means of an immunoglobulin-peroxidase bridge procedure (2) and a satisfactory method has been developed for selectively visualizing immunocytes with this technique. 1 As a means of assessing the basis for increased IgG biosynthesis in spleens of Hodgkin patients, this immunostaining procedure has been applied to localization of IgG-producing cells in specimens with Hodgkin\u27s disease

    Variational method and duality in the 2D square Potts model

    Full text link
    The ferromagnetic q-state Potts model on a square lattice is analyzed, for q>4, through an elaborate version of the operatorial variational method. In the variational approach proposed in the paper, the duality relations are exactly satisfied, involving at a more fundamental level, a duality relationship between variational parameters. Besides some exact predictions, the approach is very effective in the numerical estimates over the whole range of temperature and can be systematically improved.Comment: 20 pages, 5 EPS figure

    Preoperative physical performance as predictor of postoperative outcomes in patients aged 65 and older scheduled for major abdominal cancer surgery:A systematic review

    Get PDF
    Background: Abdominal cancer surgery is associated with considerable morbidity in older patients. Assessment of preoperative physical status is therefore essential. The aim of this review was to describe and compare the objective physical tests that are currently used in abdominal cancer surgery in the older patient population with regard to postoperative outcomes. Methods: Medline, Embase, CINAHL and Web of Science were searched until 31 December 2020. Non-interventional cohort studies were eligible if they included patients ≥65 years undergoing abdominal cancer surgery, reported results on objective preoperative physical assessment such as Cardiopulmonary Exercise Testing (CPET), field walk tests or muscle strength, and on postoperative outcomes. Results: 23 publications were included (10 CPET, 13 non-CPET including Timed Up & Go, grip strength, 6-minute walking test (6MWT) and incremental shuttle walk test (ISWT)). Meta-analysis was precluded due to heterogeneity between study cohorts, different cut-off points, and inconsistent reporting of outcomes. In CPET studies, ventilatory anaerobic threshold and minute ventilation/carbon dioxide production gradient were associated with adverse outcomes. ISWT and 6MWT predicted outcomes in two studies. Tests addressing muscle strength and function were of limited value. No study compared different physical tests. Discussion: CPET has the ability to predict adverse postoperative outcomes, but it is time-consuming and requires expert assessment. ISWT or 6MWT might be a feasible alternative to estimate aerobic capacity. Muscle strength and function tests currently have limited value in risk prediction. Future research should compare the predictive value of different physical instruments with regard to postoperative outcomes in older surgical patients
    • …
    corecore