63 research outputs found

    High BMI is significantly associated with positive progesterone receptor status and clinico-pathological markers for non-aggressive disease in endometrial cancer

    Get PDF
    Background: Endometrial cancer incidence is increasing in industrialised countries. High body mass index (BMI, kg m−2) is associated with higher risk for disease. We wanted to investigate if BMI is related to clinico-pathological characteristics, hormone receptor status in primary tumour, and disease outcome in endometrial cancer. Patients and methods: In total, 1129 women primarily treated for endometrial carcinoma at Haukeland University Hospital during 1981–2009 were studied. Body mass index was available for 949 patients and related to comprehensive clinical and histopathological data, hormone receptor status in tumour, treatment, and follow-up. Results: High BMI was significantly associated with low International Federation of Gynaecology and Obstetrics (FIGO) stage, endometrioid histology, low/intermediate grade, and high level of progesterone receptor (PR) mRNA by qPCR (n=150; P=0.02) and protein expression by immunohistochemistry (n=433; P=0.003). In contrast, oestrogen receptor (ERα) status was not associated with BMI. Overweight/obese women had significantly better disease-specific survival (DSS) than normal/underweight women in univariate analysis (P=0.035). In multivariate analysis of DSS adjusting for age, FIGO stage, histological subtype, and grade, BMI showed no independent prognostic impact. Conclusion: High BMI was significantly associated with markers of non-aggressive disease and positive PR status in a large population-based study of endometrial carcinoma. Women with high BMI had significantly better prognosis in univariate analysis of DSS, an effect that disappeared in multivariate analysis adjusting for established prognostic markers. The role of PR in endometrial carcinogenesis needs to be further studied

    WWOX protein expression varies among ovarian carcinoma histotypes and correlates with less favorable outcome

    Get PDF
    BACKGROUND: The putative tumor suppressor WWOX gene spans the common chromosomal fragile site 16D (FRA16D) at chromosome area 16q23.3-24.1. This region is a frequent target for loss of heterozygosity and chromosomal rearrangement in ovarian, breast, hepatocellular, prostate carcinomas and other neoplasias. The goal of these studies was to evaluate WWOX protein expression levels in ovarian carcinomas to determine if they correlated with clinico-pathological parameters, thus providing additional support for WWOX functioning as a tumor suppressor. METHODS: We performed WWOX protein expression analyses by means of immunobloting and immunohistochemistry on normal ovaries and specific human ovarian carcinoma Tissue Microarrays (n = 444). Univariate analysis of clinical-pathological parameters based on WWOX staining was determined by χ(2 )test with Yates' correction. The basic significance level was fixed at p < 0.05. RESULTS: Immunoblotting analysis from normal ovarian samples demonstrated consistently strong WWOX expression while 37% ovarian carcinomas showed reduced or undetectable WWOX protein expression levels. The immunohistochemistry of normal human ovarian tissue sections confirmed strong WWOX expression in ovarian surface epithelial cells and in epithelial inclusion cysts within the cortex. Out of 444 ovarian carcinoma samples analyzed 30% of tumors showed lack of or barely detectable WWOX expression. The remaining ovarian carcinomas (70%) stained moderately to strongly positive for this protein. The two histotypes showing significant loss of WWOX expression were of the Mucinous (70%) and Clear Cell (42%) types. Reduced WWOX expression demonstrated a significant association with clinical Stage IV (FIGO) (p = 0.007), negative Progesterone Receptor (PR) status (p = 0.008) and shorter overall survival (p = 0.03). CONCLUSION: These data indicate that WWOX protein expression is highly variable among ovarian carcinoma histotypes. It was also observed that subsets of ovarian tumors demonstrated loss of WWOX expression and is potentially associated with patient outcome

    A systematic review on the effect of sweeteners on glycemic response and clinically relevant outcomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The major metabolic complications of obesity and type 2 diabetes may be prevented and managed with dietary modification. The use of sweeteners that provide little or no calories may help to achieve this objective.</p> <p>Methods</p> <p>We did a systematic review and network meta-analysis of the comparative effectiveness of sweetener additives using Bayesian techniques. MEDLINE, EMBASE, CENTRAL and CAB Global were searched to January 2011. Randomized trials comparing sweeteners in obese, diabetic, and healthy populations were selected. Outcomes of interest included weight change, energy intake, lipids, glycated hemoglobin, markers of insulin resistance and glycemic response. Evidence-based items potentially indicating risk of bias were assessed.</p> <p>Results</p> <p>Of 3,666 citations, we identified 53 eligible randomized controlled trials with 1,126 participants. In diabetic participants, fructose reduced 2-hour blood glucose concentrations by 4.81 mmol/L (95% CI 3.29, 6.34) compared to glucose. Two-hour blood glucose concentration data comparing hypocaloric sweeteners to sucrose or high fructose corn syrup were inconclusive. Based on two ≀10-week trials, we found that non-caloric sweeteners reduced energy intake compared to the sucrose groups by approximately 250-500 kcal/day (95% CI 153, 806). One trial found that participants in the non-caloric sweetener group had a decrease in body mass index compared to an increase in body mass index in the sucrose group (-0.40 vs 0.50 kg/m<sup>2</sup>, and -1.00 vs 1.60 kg/m<sup>2</sup>, respectively). No randomized controlled trials showed that high fructose corn syrup or fructose increased levels of cholesterol relative to other sweeteners.</p> <p>Conclusions</p> <p>Considering the public health importance of obesity and its consequences; the clearly relevant role of diet in the pathogenesis and maintenance of obesity; and the billions of dollars spent on non-caloric sweeteners, little high-quality clinical research has been done. Studies are needed to determine the role of hypocaloric sweeteners in a wider population health strategy to prevent, reduce and manage obesity and its consequences.</p

    Entry flow of LDPE melts in a planar contraction

    No full text

    Thermal evolution of a silicone resin/polyurethane blend from preceramic to ceramic foam

    No full text
    Ceramic foams, prepared by the pyrolysis of a foamed blend of a methylsilicone preceramic polymer and a polyurethane, exhibit excellent mechanical properties. The thermal evolution of process to produce from the foamed blend (weight ratio of 1 to 1) to ceramic foam was investigated from room temperature to 1400 degreesC. Firstly, the methylsilicone preceramic polymer was characterized with various techniques. Secondly, the weight decrease and the degradation gas from the unpyrolyzed foamed blend, the phase morphology change, the compositional change, and the dimensional change were investigated. The main variation of characteristics of the foamed blend was observed in the temperature range 400 to 600 degreesC, where the largest weight loss occurred in TGA, for most of the measurements. At these temperatures, the decomposition of the polyurethane phase is mostly completed, and the polymer-to-ceramic conversion of the silicone resin is under way. The phase-morphological analysis surprisingly showed that the polyurethane was dispersed as particles in a methylsilicone preceramic polymer matrix, although originally polyurethane was intended to be used as a sacrificial template matrix. The polyurethane domain particles gradually aggregated and tended to disappear as the temperature increased, and the ceramic foam walls and struts appeared to be dense (for pyrolysis temperature < 1400 degreesC). These features can be explained assuming that the preceramic polymer matrix deformed during the decomposition of the polyurethane and the polymer-to-ceramic conversion. (C) 2001 Kluwer Academic Publishers

    Oxidation resistant ceramic foam from a silicone preceramic polymer/polyurethane blend

    No full text
    Silicon oxycarbide (SiOC) ceramic foams, produced by the pyrolysis of a foamed blend of a methylsilicone preceramic polymer and polyurethane (PU) in a 1/1 wt.% ratio, exhibit excellent physical and mechanical properties. The proposed process allows to easily modify the density and morphology of the foams, making them suitable for several engineering applications. However, it has been shown that, due to residual carbon present in the oxycarbide phase after pyrolysis, the foams are subjected to an oxidation process that reduces their strength after high temperature exposure to air (12 h 1200 C). A modified process, imploying the same silicone resin preceramic polymer but a much lower PU content (silicone resin/PU=5.25/1 wt.% ratio), has been developed and is reported in this paper. Microstructural investigations showed that carbon rich regions deriving from the decomposition of the polyurethane template are still present in the SiOC foam, but have a much smaller dimension than those found in foams with a higher PU content. Thermal gravimetric studies performed in air or oxygen showed that the low-PU containing ceramic foams display an excellent oxidation resistance, because the carbon-rich areas are embedded inside the struts or cell walls and are thus protected by the dense silicon oxycarbide matrix surrounding them. SiOC foams obtained with the novel process are capable to maintain their mechanical strength after oxidation treatments at 800 and 1200 C (12 h), while SiOC foams obtained with a higher amount of PU show about a 30% strength decrease after oxidation at 1200 C (12 h). # 2001 Elsevier Science Ltd. All rights reserved
    • 

    corecore