39 research outputs found

    Controlling the alfalfa weevil in Missouri

    Get PDF
    "Alfalfa weevil larvae caused moderate to heavy damage in recent years to the first cutting of alfalfa over the entire state. Adults and late developing larvae also caused some heavy damage to regrowth following removal of the first cutting over much of the state. Alfalfa in Missouri is now about 650,000 acres."--First page.Wayne C. Bailey and Ralph E. Munson (Department of Entomology, College of Agriculture)Revised 3/86/6

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Introduction To Fibre Channel Connectivity 1

    No full text
    With the current development of Storage Area Networks, clustering technologies, and gigabi

    Identification of a Copper-Responsive Two-Component System on the Chromosome of Escherichia coli K-12

    No full text
    Using a genetic screen we have identified two chromosomal genes, cusRS (ylcA ybcZ), from Escherichia coli K-12 that encode a two-component, signal transduction system that is responsive to copper ions. This regulatory system is required for copper-induced expression of pcoE, a plasmid-borne gene from the E. coli copper resistance operon pco. The closest homologs of CusR and CusS are plasmid-borne two-component systems that are also involved in metal responsive gene regulation: PcoR and PcoS from the pco operon of E. coli; CopR and CopS from the cop operon, which provides copper resistance to Pseudomonas syringae; and SilR and SilS from the sil locus, which provides silver ion resistance to Salmonella enterica serovar Typhimurium. The genes cusRS are also required for the copper-dependent expression of at least one chromosomal gene, designated cusC (ylcB), which is allelic to the recently identified virulence gene ibeB in E. coli K1. The cus locus may comprise a copper ion efflux system, because the expression of cusC is induced by high concentrations of copper ions. Furthermore, the translation products of cusC and additional downstream genes are homologous to known metal ion antiporters

    Disease hazard identification and assessment associated with wildlife population declines

    No full text
    © 2015 Ecological Society of Australia and Wiley Publishing Asia Pty Ltd. Disease is increasingly being recognised as a risk factor in declining wildlife populations around the globe. However, there are limited protocols to assess disease risks in declining wildlife. Using epidemiological principles, we define a step-by-step framework to complete this complex and critical task. As an example, we assessed the potential role of diseases in relation to the decline of the woylie or brush-tailed bettong (Bettongia penicillata ogilbyi) in Western Australia. Between 1999 and 2006, woylie populations declined by 90%. The wildlife disease risk assessment began with a list of all known or suspected diseases to which the woylie, a species of macropod, is susceptible. This list was assessed against the spatial, temporal and demographic characteristics of the decline. Diseases causing widespread and high mortalities or debilitation leading to predation received high scores. Based on this assessment, priority diseases or pathogens for investigation identified were haemoparasites, gastrointestinal helminths, Neospora caninum, Toxoplasmosis (Toxoplasma gondii), Encephalomyocarditis virus, Macropod Orbiviruses (Wallal virus and Warrego virus), Macropod Herpesviruses (Macropodid herpesvirus 1 and 2) and Salmonella spp
    corecore