11,003 research outputs found

    Experimental Constraints on the Neutralino-Nucleon Cross Section

    Get PDF
    In the light of recent experimental results for the direct detection of dark matter, we analyze in the framework of SUGRA the value of the neutralino-nucleon cross section. We study how this value is modified when the usual assumptions of universal soft terms and GUT scale are relaxed. In particular we consider scenarios with non-universal scalar and gaugino masses and scenarios with intermediate unification scale. We also study superstring constructions with D-branes, where a combination of the above two scenarios arises naturally. In the analysis we take into account the most recent experimental constraints, such as the lower bound on the Higgs mass, the b→sγb\to s\gamma branching ratio, and the muon g−2g-2.Comment: References added, bsgamma upper bound improved, results unchanged, Talk given at Corfu Summer Institute on Elementary Particle Physics, August 31-September 20, 200

    Muon anomalous magnetic moment in supersymmetric scenarios with an intermediate scale and nonuniversality

    Get PDF
    We analyze the anomalous magnetic moment of the muon (a_{\mu}) in supersymmetric scenarios. First we concentrate on scenarios with universal soft terms. We find that a moderate increase of a_{\mu} can be obtained by lowering the unification scale M_{GUT} to intermediate values 10^{10-12} GeV. However, large values of \tan \beta are still favored. Then we study the case of non-universal soft terms. For the usual value M_{GUT}~10^{16} GeV, we obtain a_{\mu} in the favored experimental range even for moderate \tan \beta regions \tan\beta ~ 5$. Finally, we give an explicit example of these scenarios. In particular, we show that in a D-brane model, where the string scale is naturally of order 10^{10-12} GeV and the soft terms are non universal, a_{\mu} is enhanced with low \tan\beta.Comment: Final version to appear in Phys. Rev. D. Conventions clarified, results in the figures improve

    The influence of microlensing on the shape of the AGN Fe K-alpha line

    Full text link
    We study the influence of gravitational microlensing on the AGN Fe K-alpha line confirming that unexpected enhancements recently detected in the iron line of some AGNs can be produced by this effect. We use a ray tracing method to study the influence of microlensing in the emission coming from a compact accretion disc considering both geometries, Schwarzschild and Kerr. Thanks to the small dimensions of the region producing the AGN Fe K-alpha line, the Einstein Ring Radii associated to even very small compact objects have size comparable to the accretion disc hence producing noticeable changes in the line profiles. Asymmetrical enhancements contributing differently to the peaks or to the core of the line are produced by a microlens, off-centered with respect to the accretion disc. In the standard configuration of microlensing by a compact object in an intervening galaxy, we found that the effects on the iron line are two orders of magnitude larger than those expected in the optical or UV emission lines. In particular, microlensing can satisfactorily explain the excess in the iron line emission found very recently in two gravitational lens systems, H 1413+117 and MG J0414+0534. Exploring other physical {scenario} for microlensing, we found that compact objects (of the order of one Solar mass) which belong to {the bulge or the halo} of the host galaxy can also produce significant changes in the Fe Kα_\alpha line profile of an AGN. However, the optical depth estimated for this type of microlensing is {very small, τ∌0.001\tau\sim 0.001, even in a favorable case.Comment: Astron. Astrophys. accepte

    Photo-desorption of H2O:CO:NH3 circumstellar ice analogs: Gas-phase enrichment

    Get PDF
    We study the photo-desorption occurring in H2_2O:CO:NH3_3 ice mixtures irradiated with monochromatic (550 and 900 eV) and broad band (250--1250 eV) soft X-rays generated at the National Synchrotron Radiation Research Center (Hsinchu, Taiwan). We detect many masses photo-desorbing, from atomic hydrogen (m/z = 1) to complex species with m/z = 69 (e.g., C3_3H3_3NO, C4_4H5_5O, C4_4H7_7N), supporting the enrichment of the gas phase. At low number of absorbed photons, substrate-mediated exciton-promoted desorption dominates the photo-desorption yield inducing the release of weakly bound (to the surface of the ice) species; as the number of weakly bound species declines, the photo-desorption yield decrease about one order of magnitude, until porosity effects, reducing the surface/volume ratio, produce a further drop of the yield. We derive an upper limit to the CO photo-desorption yield, that in our experiments varies from 1.4 to 0.007 molecule photon−1^{-1} in the range ∌1015−1020\sim 10^{15} - 10^{20}~absorbed photons cm−2^{-2}. We apply these findings to a protoplanetary disk model irradiated by a central T~Tauri star

    Radio continuum properties of luminous infrared galaxies. Identifying the presence of an AGN in the radio

    Get PDF
    Luminous infrared galaxies are systems enshrouded in dust, which absorbs most of their optical/UV emission and re-radiates it in the mid- and far-infrared. Radio observations are largely unaffected by dust obscuration, enabling us to study the central regions of LIRGs in an unbiased manner. The main goal of this project is to examine how the radio properties of local LIRGs relate to their infrared spectral characteristics. Here we present an analysis of the radio continuum properties of a subset of the Great Observatories All-sky LIRG Survey (GOALS), which consists of 202 nearby systems (z<0.088). Our radio sample consists of 35 systems, or 46 individual galaxies, that were observed at both 1.49 and 8.44 GHz with the VLA with a resolution of about 1 arcsec (FWHM). The aim of the project is to use the radio imagery to probe the central kpc of these LIRGs in search of active galactic nuclei. We used the archival data at 1.49 and 8.44 GHz to create radio-spectral-index maps using the standard relation between flux density Sv and frequency v, S~v^-a, where a is the radio spectral index. By studying the spatial variations in a, we classified the objects as radio-AGN, radio-SB, and AGN/SB (a mixture). We identified the presence of an active nucleus using the radio morphology, deviations from the radio/infrared correlation, and spatially resolved spectral index maps, and then correlated this to the usual mid-infrared ([NeV]/[NeII] and [OIV]/[NeII] line ratios and EQW of the 6.2 um PAH feature) and optical (BPT diagram) AGN diagnostics. We find that 21 out of the 46 objects in our sample are radio-AGN, 9 are classified as starbursts (SB), and 16 are AGN/SB. After comparing to other AGN diagnostics we find 3 objects out of the 46 that are identified as AGN based on the radio analysis, but are not classified as such based on the mid-infrared and optical AGN diagnostics presented in this study.Comment: 33 pages, 7 figures, 5 tables, to appear in A&

    Young Super Star Clusters in the Starburst of M82: The Catalogue

    Full text link
    Recent results from Hubble Space Telescope (HST) have resolved starbursts as collections of compact young stellar clusters. Here we present a photometric catalogue of the young stellar clusters in the nuclear starburst of M82, observed with the HST WFPC2 in Halpha (F656N) and in four optical broad-band filters. We identify 197 young super stellar clusters. The compactness and high density of the sources led us to develop specific techniques to measure their sizes. Strong extinction lanes divide the starburst into five different zones and we provide a catalogue of young super star clusters for each of these. In the catalogue we include relative coordinates, radii, fluxes, luminosities, masses, equivalent widths, extinctions, and other parameters. Extinction values have been derived from the broad-band images. The radii range between 3 and 9 pc, with a mean value of 5.7 +/- 1.4pc, and a stellar mass between 10e4 and 10e6 Mo. The inferred masses and mean separation, comparable to the size of super star clusters, together with their high volume density, provides strong evidence for the key ingredients postulated by Tenorio et al. (2003) as required for the development of a supergalactic wind.Comment: 45 pages, 5 figures, 12 tables. Accepted for publication in ApJ. Added Erratu

    Localized starbursts in dwarf galaxies produced by impact of low metallicity cosmic gas clouds

    Full text link
    Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter haloes. Although these predictions are unambiguous, the observational support has been indirect so far. Here we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local Universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias (GTC) optical spectra of ten XMPs show that the galaxy hosts have metallicities around 60 % solar on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6 % solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possible if the metal-poor gas fell onto the disk recently. We analyze several possibilities for the origin of the metal-poor gas, favoring the metal-poor gas infall predicted by numerical models. If this interpretation is correct, XMPs trace the cosmic web gas in their surroundings, making them probes to examine its properties.Comment: Accepted for publication in ApJ
    • 

    corecore