11,051 research outputs found

    Unfolding Rates for the Diffusion-Collision Model

    Full text link
    In the diffusion-collision model, the unfolding rates are given by the likelihood of secondary structural cluster dissociation. In this work, we introduce an unfolding rate calculation for proteins whose secondary structural elements are α\alpha-helices, modeled from thermal escape over a barrier which arises from the free energy in buried hydrophobic residues. Our results are in good agreement with currently accepted values for the attempt rate.Comment: Shorter version of cond-mat/0011024 accepted for publication in PR

    Size effects in multiferroic BiFeO3 nanodots: A first-principles-based study

    Full text link
    An effective Hamiltonian scheme is developed to investigate structural and magnetic properties of BiFeO3 nanodots under short-circuit-like electrical boundary conditions. Various striking effects are discovered. Examples include (a) scaling laws involving the inverse of the dots' size for the magnetic and electric transition temperatures; (b) the washing out of some structural phases present in the bulk via size effects; (c) the possibility of tailoring the difference between the Neel and Curie temperatures, by playing with the size and electrical boundary conditions; and (d) an universal critical thickness of the order of 1.6 nm below which the dots do not possess any long-range ordering for the electrical and magnetic dipoles, as well as, for the oxygen octahedral tiltings.Comment: 3 figure

    Independent Configurable Architecture for Reliable Operation of Unmanned Systems with Distributed Onboard Services

    Get PDF
    This paper presents the development of ICAROUS-2 (Independent Configurable Architecture for Reliable Operation of Unmanned Systems with Distributed Onboard Services), the second generation of a software architecture that integrates several algorithms as distributed onboard services to enable robust autonomous UAS applications. In particular, the ICAROUS architecture defines a framework to perform detect and avoid, geofencing, path monitoring, path planning, and autonomous decision making to ensure safety and mission progress. Most of the core algorithms implemented in ICAROUS are formally verified using an interactive theorem prover. These algorithms are composed together using a plan execution engine, whose operational semantics is formally specified. A description of the integrated architecture, services currently available, and flight test results highlighting the capability of ICAROUS are presented

    Effect of Dilution on First Order Transitions: The Three Dimensional Three States Potts Model

    Get PDF
    We have studied numerically the effect of quenched site dilution on a first order phase transition in three dimensions. We have simulated the site diluted three states Potts model studying in detail the second order region of its phase diagram. We have found that the ν\nu exponent is compatible with the one of the three dimensional diluted Ising model whereas the η\eta exponent is definitely different.Comment: RevTex. 6 pages and 6 postscript figure

    Spin injection in a single metallic nanoparticle: a step towards nanospintronics

    Full text link
    We have fabricated nanometer sized magnetic tunnel junctions using a new nanoindentation technique in order to study the transport properties of a single metallic nanoparticle. Coulomb blockade effects show clear evidence for single electron tunneling through a single 2.5 nm Au cluster. The observed magnetoresistance is the signature of spin conservation during the transport process through a non magnetic cluster.Comment: 3 page

    The high-pressure behavior of CaMoO4

    Full text link
    We report a high-pressure study of tetragonal scheelite-type CaMoO4 up to 29 GPa. In order to characterize its high-pressure behavior, we have combined Raman and optical-absorption measurements with density-functional theory calculations. We have found evidence of a pressure-induced phase transition near 15 GPa. Experiments and calculations agree in assigning the high-pressure phase to a monoclinic fergusonite-type structure. The reported results are consistent with previous powder x-ray-diffraction experiments, but are in contradiction with the conclusions obtained from earlier Raman measurements, which support the existence of more than one phase transition in the pressure range covered by our studies. The observed scheelite-fergusonite transition induces significant changes in the electronic band gap and phonon spectrum of CaMoO4. We have determined the pressure evolution of the band gap for the low- and high-pressure phases as well as the frequencies and pressure dependences of the Raman-active and infrared-active modes. In addition, based upon calculations of the phonon dispersion of the scheelite phase, carried out at a pressure higher than the transition pressure, we propose a possible mechanism for the reported phase transition. Furthermore, from the calculations we determined the pressure dependence of the unit-cell parameters and atomic positions of the different phases and their room-temperature equations of state. These results are compared with previous experiments showing a very good agreement. Finally, information on bond compressibility is reported and correlated with the macroscopic compressibility of CaMoO4. The reported results are of interest for the many technological applications of this oxide.Comment: 36 pages, 10 figures, 8 table
    • …
    corecore