6 research outputs found

    Multi-Temporal Analysis of Past and Future Land-Cover Changes of the Third Pole

    No full text
    In the past few decades, both natural and human influences have contributed to the unpredictable rates of land use and land-cover change (LUCC) in glacially devastated places. Monitoring and identifying the geographic and temporal land-cover changes and driving forces in this unique type of area may help to give the scientific basis needed to understand the effects of climate change and human activities on LUCC. The Third Pole is one such landscape that provides inevitable key ecosystem services to over 2 billion people in Asia. However, this important landscape is increasingly being threatened by the impacts of climate change. Policy and program responses to the Third Pole’s mounting socioeconomic challenges are inadequate and lack scientific evidence. Using the land-change model (LCM) and historical data from 1992 onwards, our study attempted to (i) detect the spatial patterns of land use and land-cover changes in the Third Pole from 1992 to 2020; and (ii) project them into 2060. Our analysis shows that the land use and land-cover types in the Third pole are undergoing changes. About 0.07% of the snow and ice have melted in the last three decades, indicating global warming. This melt has resulted in increasing water bodies (0.08%), especially as glacial lakes. This has significantly increased the risk of glacial outburst floods. Other key alpine land-cover types that decreased are bare land (0.6%) and agricultural land (0.05%). These land types represent important habitats for wild flora and fauna, grazing land for livestock, and food for nomads, and their loss will directly degrade ecological services and the health and wellbeing of the nomads. Land cover of forest, shrubs, and scanty vegetation have all increased by 0.3%, 0.02%, and 0.77%, respectively, inducing socio-ecological changes in the Third pole mountains. Further predication analysis showed that snow and ice, along with bare land, will continue to recede whereas forest, grassland, water bodies, shrubland, sparse vegetation, and settlement will increase. These results indicate the increasing impact of global warming that will continue to change the Third Pole. These changes have serious implications for designing adaptation and mitigation interventions in the mountains. We recommend more detailed research to investigate the underlying factors that are changing the Third Pole to develop policy and programs to help humans, livestock, and biodiversity adapt to the changes in these remote and harsh mountains. This will also help to mitigate the effects on downstream communities

    Multi-Temporal Analysis of Past and Future Land-Cover Changes of the Third Pole

    No full text
    In the past few decades, both natural and human influences have contributed to the unpredictable rates of land use and land-cover change (LUCC) in glacially devastated places. Monitoring and identifying the geographic and temporal land-cover changes and driving forces in this unique type of area may help to give the scientific basis needed to understand the effects of climate change and human activities on LUCC. The Third Pole is one such landscape that provides inevitable key ecosystem services to over 2 billion people in Asia. However, this important landscape is increasingly being threatened by the impacts of climate change. Policy and program responses to the Third Pole’s mounting socioeconomic challenges are inadequate and lack scientific evidence. Using the land-change model (LCM) and historical data from 1992 onwards, our study attempted to (i) detect the spatial patterns of land use and land-cover changes in the Third Pole from 1992 to 2020; and (ii) project them into 2060. Our analysis shows that the land use and land-cover types in the Third pole are undergoing changes. About 0.07% of the snow and ice have melted in the last three decades, indicating global warming. This melt has resulted in increasing water bodies (0.08%), especially as glacial lakes. This has significantly increased the risk of glacial outburst floods. Other key alpine land-cover types that decreased are bare land (0.6%) and agricultural land (0.05%). These land types represent important habitats for wild flora and fauna, grazing land for livestock, and food for nomads, and their loss will directly degrade ecological services and the health and wellbeing of the nomads. Land cover of forest, shrubs, and scanty vegetation have all increased by 0.3%, 0.02%, and 0.77%, respectively, inducing socio-ecological changes in the Third pole mountains. Further predication analysis showed that snow and ice, along with bare land, will continue to recede whereas forest, grassland, water bodies, shrubland, sparse vegetation, and settlement will increase. These results indicate the increasing impact of global warming that will continue to change the Third Pole. These changes have serious implications for designing adaptation and mitigation interventions in the mountains. We recommend more detailed research to investigate the underlying factors that are changing the Third Pole to develop policy and programs to help humans, livestock, and biodiversity adapt to the changes in these remote and harsh mountains. This will also help to mitigate the effects on downstream communities

    Land Use and Land Cover Change Detection and Prediction in the Kathmandu District of Nepal Using Remote Sensing and GIS

    No full text
    Understanding land use and land cover changes has become a necessity in managing and monitoring natural resources and development especially urban planning. Remote sensing and geographical information systems are proven tools for assessing land use and land cover changes that help planners to advance sustainability. Our study used remote sensing and geographical information system to detect and predict land use and land cover changes in one of the world’s most vulnerable and rapidly growing city of Kathmandu in Nepal. We found that over a period of 20 years (from 1990 to 2010), the Kathmandu district has lost 9.28% of its forests, 9.80% of its agricultural land and 77% of its water bodies. Significant amounts of these losses have been absorbed by the expanding urbanized areas, which has gained 52.47% of land. Predictions of land use and land cover change trends for 2030 show worsening trends with forest, agriculture and water bodies to decrease by an additional 14.43%, 16.67% and 25.83%, respectively. The highest gain in 2030 is predicted for urbanized areas at 18.55%. Rapid urbanization—coupled with lack of proper planning and high rural-urban migration—is the key driver of these changes. These changes are associated with loss of ecosystem services which will negatively impact human wellbeing in the city. We recommend city planners to mainstream ecosystem-based adaptation and mitigation into urban plans supported by strong policy and funds

    Long-term trend of and correlation between vegetation greenness and climate variables in Asia based on satellite data

    No full text
    Satellite data has been used to ascertain trends and correlations between climate change and vegetation greenness in Asia. Our study utilized 33-year (1982–2014) AVHRR-GIMMS (Advanced Very High Resolution Radiometer–Global Inventory Modelling and Mapping Studies) NDVI3g and CRU TS (Climatic Research Unit Time Series) climate variable (temperature, rainfall, and potential evapotranspiration) time series. First, we estimated the overall trends for vegetation greenness and climate variables and analyzed trends during summer (April–October), winter (November–March), and the entire year. Second, we carried out correlation and regression analyses to detect correlations between vegetation greenness and climate variables. Our study revealed an increasing trend (0.05–0.28) in temperature in northeastern India (bordering Bhutan), Southeast Bhutan, Yunnan Province of China, Northern Myanmar, Central Cambodia, northern Laos, southern Vietnam, eastern Iran, southern Afghanistan, and southern Pakistan. However, a decreasing trend in temperature (0.00 to −0.04) was noted for specific areas in southern Asia including Central Myanmar and northwestern Thailand and the Guangxi, Southern Gansu, and Shandong provinces of China. The results also indicated an increasing trend for evapotranspiration and air temperature accompanied by a decreasing trend for vegetation greenness and rainfall. Increases in both the mean annual signal and annual cycle occurred in the forest, herbaceous, and cropland areas of India, Northwest China, and eastern Kazakhstan. The temperature was found to be the main driver of the changing vegetation greenness in Kazakhstan, northern Mongolia, Northeast and Central China, North Korea, South Korea, and northern Japan, showing an indirect relationship (R = 0.84–0.96). • Temperature is the main climatic variable affecting vegetation greenness. • A downward trend in vegetation greenness was observed during summer (April–October). • Temperature showed an upward trend across many areas of Asia during the study period. • In winter, rainfall showed downward and upward trends in different parts of Asia. Method name: Temporal trend analysis, Statistical analysis, Keywords: Vegetation greenness, Precipitation, Evaporation, Temperature, Correlation, Tren
    corecore