13 research outputs found

    Currently favored sampling practices for tumor sequencing can produce optimal results in the clinical setting

    Get PDF
    Tumor heterogeneity is a consequence of clonal evolution, resulting in a fractal-like architecture with spatially separated main clones, sub-clones and single-cells. As sequencing an entire tumor is not feasible, we ask the question whether there is an optimal clinical sampling strategy that can handle heterogeneity and hypermutations? Here, we tested the effect of sample size, pooling strategy as well as sequencing depth using whole-exome sequencing of ovarian tumor specimens paired with normal blood samples. Our study has an emphasis on clinical application—hence we compared single biopsy, combined local biopsies and combined multi-regional biopsies. Our results show that sequencing from spatially neighboring regions show similar genetic compositions, with few private mutations. Pooling samples from multiple distinct regions of the primary tumor did not increase the overall number of identified mutations but may increase the robustness of detecting clonal mutations. Hypermutating tumors are a special case, since increasing sample size can easily dilute sub-clonal private mutations below detection thresholds. In summary, we compared the effects of sampling strategies (single biopsy, multiple local samples, pooled global sample) on mutation detection by next generation sequencing. In view of the limitations of present tools and technologies, only one sequencing run per sample combined with high coverage (100–300 ×) sequencing is affordable and practical, regardless of the number of samples taken from the same patient. © 2020, The Author(s)

    Meta-analysis of gene expression profiles associated with histological classification and survival in 829 ovarian cancer samples.

    Get PDF
    Transcriptomic analysis of global gene expression in ovarian carcinoma can identify dysregulated genes capable to serve as molecular markers for histology subtypes and survival. The aim of our study was to validate previous candidate signatures in an independent setting and to identify single genes capable to serve as biomarkers for ovarian cancer progression. As several datasets are available in the GEO today, we were able to perform a true meta-analysis. First, 829 samples (11 datasets) were downloaded, and the predictive power of 16 previously published gene sets was assessed. Of these, eight were capable to discriminate histology subtypes, and none was capable to predict survival. To overcome the differences in previous studies, we used the 829 samples to identify new predictors. Then, we collected 64 ovarian cancer samples (median relapse-free survival 24.5 months) and performed TaqMan Real Time Polimerase Chain Reaction (RT-PCR) analysis for the best 40 genes associated with histology subtypes and survival. Over 90% of subtype-associated genes were confirmed. Overall survival was effectively predicted by hormone receptors (PGR and ESR2) and by TSPAN8. Relapse-free survival was predicted by MAPT and SNCG. In summary, we successfully validated several gene sets in a meta-analysis in large datasets of ovarian samples. Additionally, several individual genes identified were validated in a clinical cohort

    Meta-analysis of gene expression profiles associated with histological classification and survival in 829 ovarian cancer samples

    Get PDF
    Transcriptomic analysis of global gene expression in ovarian carcinoma can identify dysregulated genes capable to serve as molecular markers for histology subtypes and survival. The aim of this study was to validate previous candidate signatures in an independent setting and to identify single genes capable to serve as biomarkers for ovarian cancer progression. As several datasets are available in the GEO today, we were able to perform a true meta-analysis. First, 829 samples (11 datasets) were downloaded, and the predictive power of 16 previously published gene sets was assessed. Of these, 8 were capable to discriminate histology subtypes and none was capable to predict survival. To overcome the differences in previous studies, we used the 829 samples to identify new predictors. Then we collected 64 ovarian cancer samples (median relapse-free survival 24.5 months) and performed TaqMan RT-PCR analysis for the best 40 genes associated with histology subtypes and survival. Over 90% of subtype-associated genes were confirmed. Overall survival was effectively predicted by hormone receptors (PGR and ESR2) and by TSPAN8. Relapse-free survival was predicted by MAPT and SNCG. In summary, we successfully validated several gene sets in a meta-analysis in large datasets of ovarian samples. Additionally, several individual genes identified were validated in a clinical cohort

    miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients

    Get PDF
    PURPOSE: The proper validation of prognostic biomarkers is an important clinical issue in breast cancer research. MicroRNAs (miRNAs) have emerged as a new class of promising breast cancer biomarkers. In the present work, we developed an integrated online bioinformatic tool to validate the prognostic relevance of miRNAs in breast cancer. METHODS: A database was set up by searching the GEO, EGA, TCGA, and PubMed repositories to identify datasets with published miRNA expression and clinical data. Kaplan-Meier survival analysis was performed to validate the prognostic value of a set of 41 previously published survival-associated miRNAs. RESULTS: All together 2178 samples from four independent datasets were integrated into the system including the expression of 1052 distinct human miRNAs. In addition, the web-tool allows for the selection of patients, which can be filtered by receptors status, lymph node involvement, histological grade, and treatments. The complete analysis tool can be accessed online at: www.kmplot.com/mirpower . We used this tool to analyze a large number of deregulated miRNAs associated with breast cancer features and outcome, and confirmed the prognostic value of 26 miRNAs. A significant correlation in three out of four datasets was validated only for miR-29c and miR-101. CONCLUSIONS: In summary, we established an integrated platform capable to mine all available miRNA data to perform a survival analysis for the identification and validation of prognostic miRNA markers in breast cancer

    Therapeutic Potential of Tumor Metabolic Reprogramming in Triple-Negative Breast Cancer

    No full text
    Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with clinical features of high metastatic potential, susceptibility to relapse, and poor prognosis. TNBC lacks the expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). It is characterized by genomic and transcriptional heterogeneity and a tumor microenvironment (TME) with the presence of high levels of stromal tumor-infiltrating lymphocytes (TILs), immunogenicity, and an important immunosuppressive landscape. Recent evidence suggests that metabolic changes in the TME play a key role in molding tumor development by impacting the stromal and immune cell fractions, TME composition, and activation. Hence, a complex inter-talk between metabolic and TME signaling in TNBC exists, highlighting the possibility of uncovering and investigating novel therapeutic targets. A better understanding of the interaction between the TME and tumor cells, and the underlying molecular mechanisms of cell–cell communication signaling, may uncover additional targets for better therapeutic strategies in TNBC treatment. In this review, we aim to discuss the mechanisms in tumor metabolic reprogramming, linking these changes to potential targetable molecular mechanisms to generate new, physical science-inspired clinical translational insights for the cure of TNBC

    Az RNS-interferencia és klinikai alkalmazásai

    No full text
    RNA interference is a type of posttranscriptional gene silencing, when short RNA molecules suppress the function of RNAs and block gene expression. Double-stranded RNAs or short interfering RNAs injected into cells activate the RNA-induced silencing complex which degrades the target messenger RNA. The short RNAs produced inside the cell are called micro RNAs. These form a hairpin and then have the same function as double-stranded RNAs. RNA interference is an evolutionary important mechanism having a role in the protection against transposon and viral infection and regulate gene expression. While a number of studies demonstrate the in vivo applicability of RNAi, the first potential clinical trials are arising. So far it has been used to treat viral infections, inhibit macula degeneration, decrease the level of cholesterol in blood, treat cancer and neurodegenerative diseases. However, its application is hampered by ineffective bioinformatics algorithms unable to design effective short interfering RNAs, by low delivery efficiency and by the limited use to temporary antagonist gene silencing. The most important advantage of its application is the exceptional specificity resulting minimal side-effects. For this reason therapies based on RNA interference can be expected to spread in the near future

    Gene Expression Profiling in Early Breast Cancer—Patient Stratification Based on Molecular and Tumor Microenvironment Features

    No full text
    Patients with early-stage hormone receptor-positive, human epidermal growth factor receptor 2-negative (HER2−) breast cancer (BC) are typically treated with surgery, followed by adjuvant systemic endocrine therapy with or without adjuvant chemotherapy and radiation therapy. Current guidelines regarding the use of adjuvant systemic therapy depend on clinical and pathological factors, such as the morphological assessment of tumor subtype; histological grade; tumor size; lymphovascular invasion; and lymph node status combined with estrogen receptor, progesterone receptor, and HER2 biomarker profiles assessed using immunohistochemistry and in situ hybridization. Additionally, the prognostic and predictive value of tumor-infiltrating lymphocytes and their composition is emerging as a key marker in triple negative (TNBC) and HER2-enriched molecular breast tumor subtypes. However, all these factors do not necessarily reflect the molecular heterogeneity and complexity of breast cancer. In the last two decades, gene expression signatures or profiling (GEP) tests have been developed to predict the risk of disease recurrence and estimate the potential benefit of receiving adjuvant systemic chemotherapy in patients with luminal breast cancer. GEPs have been utilized to help physicians to refine decision-making process, complementing clinicopathological parameters, and can now be used to classify the risk of recurrence and tailoring personalized treatments. Several clinical trials using GEPs validate the increasing value of such assays in different clinical settings, addressing relevant clinical endpoints. Finally, the recent approval of immune checkpoint inhibitors in TNBC and the increasing use of immunotherapy in different molecular BC populations highlight the opportunity to refine current GEPs by including a variety of immune-related genes that may help to improve predicting drug response and finetune prognosis

    Evaluating Individual Scientific Output Normalized to Publication Age and Academic Field Through the Scientometrics.org Project

    No full text
    When evaluating the publication performance of a scientist one has to consider not only the difference in publication norms in different scientific fields, but also the length of the academic career of the investigated researcher. Here, our goal was to establish a database suitable as a reference for the ranking of scientific performance by normalizing the researchers output to those with the same academic career length and active in same scientific field. By using the complete publication and citation data of 17,072 Hungarian researchers, we established a framework enabling the quick assessment of a researcher’s scientific output by comparing four parameters (h-index, yearly independent citations received, number of publications, and number of high impact publications), to the age-matched values of all other researchers active in the same scientific discipline. The established online tool available at www.scientometrics.org could be an invaluable help for faster and more evidence-based grant review processes

    Proteotranscriptomic Discrimination of Tumor and Normal Tissues in Renal Cell Carcinoma

    No full text
    Clear cell renal carcinoma is the most frequent type of kidney cancer, with an increasing incidence rate worldwide. In this research, we used a proteotranscriptomic approach to differentiate normal and tumor tissues in clear cell renal cell carcinoma (ccRCC). Using transcriptomic data of patients with malignant and paired normal tissue samples from gene array cohorts, we identified the top genes over-expressed in ccRCC. We collected surgically resected ccRCC specimens to further investigate the transcriptomic results on the proteome level. The differential protein abundance was evaluated using targeted mass spectrometry (MS). We assembled a database of 558 renal tissue samples from NCBI GEO and used these to uncover the top genes with higher expression in ccRCC. For protein level analysis 162 malignant and normal kidney tissue samples were acquired. The most consistently upregulated genes were IGFBP3, PLIN2, PLOD2, PFKP, VEGFA, and CCND1 (p < 10−5 for each gene). Mass spectrometry further validated the differential protein abundance of these genes (IGFBP3, p = 7.53 × 10−18; PLIN2, p = 3.9 × 10−39; PLOD2, p = 6.51 × 10−36; PFKP, p = 1.01 × 10−47; VEGFA, p = 1.40 × 10−22; CCND1, p = 1.04 × 10−24). We also identified those proteins which correlate with overall survival. Finally, a support vector machine-based classification algorithm using the protein-level data was set up. We used transcriptomic and proteomic data to identify a minimal panel of proteins highly specific for clear cell renal carcinoma tissues. The introduced gene panel could be used as a promising tool in the clinical setting
    corecore