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Transcriptomic analysis of global gene expression in ovarian carcinoma can identify dysregulated genes capable to serve as

molecular markers for histology subtypes and survival. The aim of our study was to validate previous candidate signatures in

an independent setting and to identify single genes capable to serve as biomarkers for ovarian cancer progression. As several

datasets are available in the GEO today, we were able to perform a true meta-analysis. First, 829 samples (11 datasets) were

downloaded, and the predictive power of 16 previously published gene sets was assessed. Of these, eight were capable to

discriminate histology subtypes, and none was capable to predict survival. To overcome the differences in previous studies,

we used the 829 samples to identify new predictors. Then, we collected 64 ovarian cancer samples (median relapse-free

survival 24.5 months) and performed TaqMan Real Time Polimerase Chain Reaction (RT-PCR) analysis for the best 40 genes

associated with histology subtypes and survival. Over 90% of subtype-associated genes were confirmed. Overall survival was

effectively predicted by hormone receptors (PGR and ESR2) and by TSPAN8. Relapse-free survival was predicted by MAPT and

SNCG. In summary, we successfully validated several gene sets in a meta-analysis in large datasets of ovarian samples.

Additionally, several individual genes identified were validated in a clinical cohort.

With �43,000 cases in Europe and �22,000 cases in the
United States of America each year, ovarian carcinoma is the
eighth most frequent malignant tumor in the female popula-
tion. Although some improvements were achieved in the
5-year survival due to improved efficiency of surgery and
treatment with empirically optimized combinations of cyto-
toxic drugs, the overall cure rate today remains as low as
30%. The most likely explanation for this is the high hetero-
geneity of ovarian carcinomas.

Subtypes of ovarian cancer are recognized based on grade
and on histologic subtypes. While high-grade malignancies
grow rapidly, are relatively chemosensitive and evolve with-
out a definitive precursor lesion, low-grade tumors grow
more slowly, are more resistant to chemotherapy and share
molecular characteristics with other low-malignant potential
neoplasms.1 Expression profiling studies have shown that
high-grade tumors cluster separately from low-grade carcino-
mas and borderline tumors.2,3 About 90% of epithelial ovar-
ian cancers are clonal.4 This is also reflected in their classifi-
cation into four different main histotypes of high-grade
serous (resembling normal cells of the fallopian tube), endo-
metrioid (cells of the endometrium), mucinous (endocervix)
and clear cell (vagina) cancers. The correlation between the
different subtypes and their precursor cells were already con-
firmed by altered gene expression patterns.5 These subtypes
show further differences regarding their epidemiology, genetic
changes, gene expression, tumor markers and chemotherapy
response. Meanwhile, similarities were also described between
high-grade serous and endometrioid cancers and between
endometrioid and clear-cell cancers.6,7 High-grade serous and
endometrioid cancers respond better to platinum- and tax-
ane-based chemotherapeutic regimens than the other
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subtypes. Mucinous and endometrioid carcinomas are less
aggressive and have a better overall survival than high-grade
serous tumors. Mucinous and endometrioid ovarian carcino-
mas have low malignant potential.1,4,8 Mucinous, but not
clear cell histology, is associated with significantly worse
prognosis in advanced ovarian cancer treated with combina-
tion platinum/paclitaxel.9 Clinicians also recognize that the
behavior of endometrioid adenocarcinoma is quite different
from that of clear cell or high-grade serous carcinoma. The
aggressive high-grade serous tumors account for approxi-
mately 60 to 80% of ovarian cancer cases. It is of outmost in-
terest to identify markers of histology subtypes, disease pro-
gression and aggressiveness.

It was previously hypothesized that analysis of global gene
expression in ovarian carcinoma can identify dysregulated
genes capable of serving as molecular markers, provide
insight into the molecular characteristics of the disease and
provide the basis for development of new diagnostic tools as
well as new targeted therapy protocols. Gene expression anal-
ysis has identified ovarian carcinogenesis-,10–30 histology sub-
type-,12,19,31,32 therapy response-,33–39 prognosis- and progres-
sion-21,24,40–44 related gene signatures. In a recent study, a
databank of single genes published as components of gene
expression profiles specific for ovarian carcinoma was con-
structed with usable data sets that used different array tech-
nology platforms. In these studies, 463 genes were associated
with histological subtypes, but none of them was identified in
more than a single study.45 The discrepancy and low repro-
ducibility of these studies also led to the limited predictive

values of these signatures which have not yet been sufficient
to affect patient management.

One of the main weakness of previous studies was the low
sample number used for analysis. As currently several datasets
are available in the Gene Expression Omnibus, we decided to
perform a true meta-analysis of these data. Our further aim
was to overcome the differences in previous studies and to es-
tablish a new predictor which is capable to discriminate
between the four most frequent histology subtypes as well as
predict prognosis in ovarian cancer. To achieve these goals, we
accumulated a sizeable collective of public microarray datasets,
analyzed the data and then used samples from our ovarian can-
cer biobank for subsequent RT-PCR based validation.

Methods
Included raw microarray studies

We systematically searched Pubmed (http://www.pubmed.-
com) and GEO (http://www.ncbi.nlm.nih.gov/geo/) using the
keywords ‘‘ovarian,’’ ‘‘normal,’’ ‘‘cancer’’ and ‘‘GPL96’’ and
‘‘GPL570’’ (platform accession names for Affymetrix
HGU133A and HGU133Aþ2 microarrays). Only studies
publishing raw microarray expression data were considered
and included in our present analyses.

Statistical analyses

First, the platform GPL570 was mapped to the platform
GPL96 using the best match tables available at the Netaffx
analysis center (http://www.affymetrix.com). The downloaded
data was MAS 5.0 normalized in the R statistical

Figure 1. Overview of the study.
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Table 1. Genes capable to predict survival or histology subtype on the RT-PCR results

Assay ID Symbol Gene name SAM score q value (%)
Gene discovered as
associated with

Overall survival in all patients (n ¼ 64)

Hs00172183_m1 PGR Progesterone receptor 1.62 <0.01 Hormone receptor

Hs01105519_m1 ESR2 Estrogen receptor 2 (ER beta) 1.55 <0.01 Hormone receptor

Hs00610327_m1 TSPAN8 Tetraspanin 8 1.54 <0.01 Subtype

Relapse free survival in all patients (n ¼ 64)

Hs00902188_m1 MAPT Microtubule-associated protein tau �1.61 <0.01 Chemotherapy response

Hs00268306_m1 SNCG Synuclein, gamma (breast
cancer-specific protein 1)

�1.67 <0.01 Breast cancer specific

Relapse free survival in taxol þ carboplatin treated patients (n ¼ 51)

Hs00539278_m1 MYRIP Myosin VIIA and Rab
interacting protein

�1.61 <0.01 Survival

Hs00268306_m1 SNCG Synuclein, gamma (breast
cancer-specific protein 1)

�1.77 <0.01 Breast cancer specific

High-grade serous subtype vs. all other samples (n ¼ 64)

Hs00266715_s1 GAS1 Growth arrest-specific 1 2.35 <0.01 Subtype

Hs01103751_m1 WT1 Wilms tumor 1 2.86 <0.01 Subtype

Hs00245879_m1 MSLN Mesothelin 1.74 <0.01 Subtype

Hs00418568_m1 NPR1 Natriuretic peptide receptor
A/guanylatecyclase A

2.37 <0.01 Subtype

Hs00610327_m1 TSPAN8 Tetraspanin 8 �3.71 <0.01 Subtype

Hs00181323_m1 GAS6 Growth arrest-specific 6 0.94 2.53 Subtype

Hs00191351_m1 ARHGAP29 Rho GTPase activating protein 29 1.38 <0.01 Subtype

Hs01065189_m1 MUC16 Mucin 16, cell surface associated 1.73 <0.01 Subtype

Hs00170299_m1 ZYX ESP-2, HED-2 1.53 <0.01 Survival

Hs00188109_m1 MYO9B Myosin IXB 1.68 <0.01 Survival

Hs00256958_m1 PHF1 PHD finger protein 1 0.86 2.53 Survival

Hs00274988_m1 HDGFRP3 Hepatoma-derived growth factor,
related protein 3

0.94 2.53 Survival

Hs00268306_m1 SNCG Synuclein, gamma (breast
cancer-specific protein 1)

2.49 <0.01 Breast cancer specific

Hs01046815_m1 ESR1 Estrogen receptor 1 0.87 2.53 Hormone receptor

Hs00160607_m1 PSMB7 Proteasome (prosome, macropain)
subunit, beta type, 7

0.89 2.53 Chemotherapy response

Hs00258236_m1 TUBB1 Tubulin, beta 1 1.41 <0.01 Chemotherapy response

Hs00362387_m1 TUBA1A Tubulin alpha 1a 0.96 2.53 Chemotherapy response

Hs00737065_m1 MAP4 Microtubule-associated protein 4 1.62 <0.01 Chemotherapy response

Hs00742533_s1 TUBB2A Tubulin, beta 2A 1.05 2.53 Chemotherapy response

Hs00744842_sH TUBA1B Tubulin, alpha 1b 1.46 <0.01 Chemotherapy response

Hs00893144_g1 TUBB4 Tubulin, beta 4 1.13 2.53 Chemotherapy response

Hs00902188_m1 MAPT Microtubule-associated protein tau 0.98 2.53 Chemotherapy response

High-grade serous vs. serous borderline and low grade

Hs00267190_m1 SCGB2A2 Secretoglobin, family 2A, member 2 1.14 4.09 Subtype

Hs00245879_m1 MSLN Mesothelin 1.45 4.09 Subtype

Hs03063307_m1 TOP2A Topoisomerase (DNA) II alpha 2.88 <0.01 Survival

Hs00188109_m1 MYO9B Myosin IXB 1.41 4.09 Survival
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environment (http://www.R-project.org) using the Bioconduc-
tor package Affy (http://www.bioconductor.org). MAS 5.0
applies normalization on an individual chip; it has excellent
specificity and good sensitivity. As MAS 5.0 it is the factory-
default normalization method, in the future even single
microarrays can be added to our table. To eliminate the
effects of different factory-default settings for average expres-
sion on the GPL96 and GPL570 platforms, a second scaling
normalization was performed on the matched gene set to set
the average expression for each array to 1,000. Then, gene
expression data was imported into BRB-ArrayTools 3.7.0
(developed by Dr. Richard Simon and Amy Peng Lam,
http://linus.nci.nih.gov/BRB-ArrayTools.html). Thresholding
the intensity at the minimum value was performed if the
spot intensity was below the minimum value of 10. If less
than 20% of expression data had at least a 1.5-fold change in
either direction from gene’s median value or the percent of
data missing or filtered out exceeded 50%, then the gene was
discarded. All together 21,377 genes passed these filtering cri-
teria. Then, gene set expression comparison using LS/KS test
were performed to compare different histology subtypes as
well as normal and cancerous tissue. In these, the significance
threshold was set to 0.01. In the survival gene set analysis,
only samples with available survival data were used (n ¼
199). The complete overview of the applied analytical path-
way is presented in Figure 1.

Clinical sample collection

We collected ovarian cancer samples at the 1st Department
of Gynecology of the Semmelweis University Budapest

(NOI1) and the National Institute of Cancer (OOI) between
2005 and 2008. Ethical approval for the clinical sample col-
lection was granted by an Institutional Ethical Commission.
Samples were snap frozen and stored at �80�C until ribonu-
cleic acid (RNA) isolation.

RNA isolation and quality control

RNA was isolated using the Qiagen RNeasy kit (Qiagen, Hil-
den, Germany). Frozen biopsy samples were lysed and ho-
mogenized in the mixture of 300 ll GITC-containing lysis
buffer and 3 ll b-mercaptoethanol by Polytron homogeniza-
tor for 30–40 sec. The lysed samples were digested in Pro-
teinase K solution at 55�C for 10 min. After silica membrane
cleaning and DNase I treatment (to absolutely remove
genomic DNA), the total RNA was eluted in 50 ll RNase-
free water.

Quantity and quality of the isolated RNA was tested by
using a Nanodrop1000 system (BCM, Houston, TX) and by
gel electrophoresis using an Agilent Bioanalyzer system (Agi-
lent Technologies, Santa Clara, CA). RNA (A260) protein
(A280) concentrations and sample purity (260/280 ratio)
were also measured. Only high quality, intact total RNA was
accepted for samples that showed regular 18S and 28S ribo-
somal RNA bend pattern on the Bioanalyzer analysis. RNA
was kept in a deep freezer at �80�C until RT-PCR
measurement.

TaqMan RT-PCR measurements

TaqMan real-time PCR was used to measure the expression
of 40 selected genes using a Micro Fluidic Card System

Table 1. Genes capable to predict survival or histology subtype on the RT-PCR results (Continued)

Assay ID Symbol Gene name SAM score q value (%)
Gene discovered as
associated with

Hs00267624_m1 PRPS2 Phosphoribosyl pyrophosphate
synthetase 2

0.68 5.57 Survival

Hs00194807_m1 GIPC1 GIPC PDZ domain containing
family, member 1

1.30 4.09 Survival

Hs00192885_m1 DOPEY2 Dopey family member 2 0.93 5.57 Survival

Hs00855445_g1 LYPLA2 Lysophospholipase II 1.17 4.09 Survival

Hs00268306_m1 SNCG Synuclein, gamma (breast
cancer-specific protein 1)

1.79 4.09 Breast cancer specific

Hs00744842_sH TUBA1B Tubulin, alpha 1b 1.86 4.09 Chemotherapy response

Hs00742533_s1 TUBB2A Tubulin, beta 2A 1.62 4.09 Chemotherapy response

Hs00760066_s1 TUBB4 Tubulin, beta 4 1.67 4.09 Chemotherapy response

Hs00737065_m1 MAP4 Microtubule-associated protein 4 1.52 4.09 Chemotherapy response

Hs00258236_m1 TUBB1 Tubulin, beta 1 0.93 5.57 Chemotherapy response

Hs00733770_m1 TUBA1C Tubulin, alpha 1c 1.57 4.09 Chemotherapy response

Hs00902188_m1 MAPT Microtubule-associated protein tau 1.18 4.09 Chemotherapy response

Hs00160607_m1 PSMB7 Proteasome (prosome, macropain)
subunit, beta type, 7

1.08 4.09 Chemotherapy response

Hs00219905_m1 ABCC1 ATP-binding cassette, subfamily C,
member 1

1.12 4.09 Chemotherapy response
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Table 2. Summary of the previously published gene sets (2000 to 2010)

Publication Platform
No. of
genes

Validation
(no. of genes) Samples investigated

Ovarian carcinogenesis

Ono et al.12 Custom, 9121 genes 103 RT-PCR (9) 9 ovarian tumors compared to normal
counterparts

Mok et al.11 Micromax 30 RT-PCR and IHC (1) 3 ovarian tumor cell lines vs. 3 normal
ovarian surface epithelial cells
(validation on 64 patients and 137
control subjects)

Welsh et al.14 AffymetrixHuGeneFl 18 RT-PCR (3) 24 malignant and 4 normal tissues

Tonin et al.13 Affymetrix Hs6000 17 Northern blot (5) 4 spontaneously immortalized ovarian
cancer cell lines vs. 1 normal ovarian
surface epithelium

Bayani et al.10 Custom, 1718 genes 26 RT-PCR (3) 17 tumors from 13 patients

Zhang et al.15 Custom, 512 cancer
related genes

30 – Ovarian carcinomas vs. normal
ovarian tissues

Donninger et al.18 Affymetrix HGU133A þ2 1150 RT-PCR (14) 37 advanced stage papillary serous
primary carcinomas

Lancaster et al.21 AffymetrixHuGeneFL 45 RT-PCR (2) 31 serous ovarian cancer samples
vs. 3 normal ovarian epithelial samples

Santin et al.26 Affymetrix HGU95Av2 114 RT-PCR (2) genes differentiating uterine and ovarian
serous papillary carcinomas

Warrenfeltz
et al., 2004

Affymetrix, U95Av2 163 RT-PCR 18 ovarian tumors including benign
adenomas, borderline adenocarcinomas
of low malignant potential and malignant
adenocarcinomas.

Zhang et al.30 Custom, 512 genes 39 IHC (1) Ovarian carcinomas vs. normal ovarian tissues

Le Page et al.22 AffymetrixHuGeneFL 6800 126 RT-PCR (13) 65 primary cultures of normal ovarian
surface epithelial and epithelial ovarian
cancer

Bignotti et al.16 Affymetrix HGU133A 140 RT-PCR (6) 19 flash-frozen ovarian serous papillary
carcinoma vs. 15 human ovarian
surface epithelium short-term cultures

Heinzelmann-Schwarz
et al.19

Affymetrix custom: EosHu03 72 RT-PCR (11) 49 primary ovarian cancers and additional
normal ovaries

Mougeot et al.24 Affymetrix HGFA chips 54 – 61 ovarian specimens of normal and
various cancerous type

Li et al.23 – 23 RT-PCR 2 human OSE cell lines and 2 ovarian
cancer cell lines (A2780 and Caov-3)

Zhang et al.29 Array-based CGH 5 RT-PCR 89 human ovarian cancer specimens

Sunde et al.27 Affymetrix 7 RT-PCR 37 undissected, 68 microdissected
advanced-stage, and 14 microdissected
early-stage papillary serous cancers

Zhang et al.28 – 6 RT-PCR 89 human ovarian cancer specimens

Grisaru et al., 2007 cDNA microarrays 329 RT-PCR 7 normal ovaries vs. 26 ovaries with
serous epithelial ovarian cancer

Klinck et al.20 LISA 48 RT-PCR 25 normal and 21 serous ovarian
cancer tissues

Crijns et al.17 GEO GSE 13876 86 RT-PCR 157 advanced stage serous ovarian
cancers

Park et al.25 Affymetrix U133þ2 33 RT-PCR 62 samples from patients with stage III,
high-grade serous ovarian cancer
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(Applied Biosystems, Foster City, CA). Of the top genes cor-
related to survival and related to histology subtypes, those
with available taqman probes were selected. Additionally, the
genes had to have an average MAS 5.0 expression over 1,000
in at least one class to be included. A set of genes correlated
to chemotherapy resistance (tubulins and ABC transporters)

and breast cancer (mammaglobin-A and synuclein gamma),
and two housekeeping genes were also added for additional
analyses. The list of included genes is presented in Table 1.
The measurements were performed using an ABI PRISMVR

7900HT Sequence Detection System as described in the prod-
uct user guide.

Table 2. Summary of the previously published gene sets (2000 to 2010) (Continued)

Publication Platform
No. of
genes

Validation
(no. of genes) Samples investigated

Fedorowicz et al., 2009 RT-PCR 58 RT-PCR 5 ovarian serous adenocarcinoma patients.

Quinn et al., 2009 Affymetrix U133A 93 RT-PCR Cultures of normal ovarian surface
epithelial cells, frozen malignant serous
ovarian tumor samples and epithelial
ovarian cancer cell lines

Histology subtypes

Ono et al.12 Custom, 9121 genes 115 RT-PCR (9) 5 serous adenocarcinomas vs. 4 mucinous
adenocarcinomas

Moreno-Bueno et al.31 Custom, 6386 genes 66 RT-PCR (6) 24 endometrioid carcinomas vs. 11
nonendometrioid carcinomas

Zheng et al.32 Custom cDNA array 9 – Serous, borderline and endometrioid
ovarian carcinomas

Heinzelmann-Schwarz
et al.19

Affymetrix custom: EosHu03 273 RT-PCR (11) 49 different primary ovarian cancers

Therapy response

Sugimura et al.33 Toyobo arrays 45 RT-PCR (4) The ovarian cancer cell line KF, and its
paclitaxel resistant clone

Lamendola et al.34 Affymetrix HGU95Av2 18 – Paclitaxel resistant sublines compared
to parental SKOV-3 line

Selvanayagam et al.35 Custom, 10692 genes 16 – 8 primary ovarian cancer specimens
stratified into 2 groups based on their
response to cisplatin

Macleod et al.36 Clontech Atlas human
cancer chip 1.2

108 RT-PCR (14) Cisplatin resistant PE01CDDP compared to
parent PE01 cell line

Samimi et al.37 Stanford microarrays 272 – Oxaliplatin sensitive and stably resistant
sublines of five cell lines

Bild et al.38 Affymetrix HGU133A
plus 2.0 and HGU95Av2

165 – Recombinant adenovirus-transformed
human primary mammary epithelial cell
cultures and ovarian cancer samples,
beta-catenin and src pathways

Cheng et al.39 Stanford microarrays 25 RT-PCR (5) Six pairs of cisplatin resistant and
sensitive ovarian carcinoma cells lines

Prognosis and progression

Xu et al.40 BioDoor 4096 array 22 – High and low metastatic tumor tissues
and normal ovarian tissues

Adib et al.41 Affymetrix HGU95Av2 42 RT-PCR (4) Stage III ovarian serous adenocarcinomas
vs. normal ovarian tissue

De Cecco et al.42 Custom, 4451 cancer-related
genes

30 RT-PCR (10) Genes differentiating stages III–IV
epithelial ovarian cancer samples

Lancaster et al.21 AffymetrixHuGeneFL 40 RT-PCR (2) 31 serous ovarian cancer samples

Ouellet et al.43 AffymetrixHuGeneFL 45 RT-PCR (8) 37 tumors with low malignant potential
and invasive tumors

Motamed-Khorasani et al.44 Custom, 19200 genes 17 RT-PCR Genes regulated in response to androgen
exposure in 149 patients

Mougeot et al.24 Affymetrix HGFA chips 61 – 27 ovarian cancer samples
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Data analysis of the RT-PCR measurements

For data analysis, the SDS 2.2 software was used. The extracted
delta Ct values (which represent the expression normalized to
the average expression of the ribosomal 18S and the RPLP0
expression) were grouped according to the clinical characteristics
(survival and histology subtypes) into groups. Then, comparison
of two classes and survival analysis was performed using Signifi-
cance Analysis of Microarrays.46 In these, two groups (e.g., high-
grade serous carcinomas vs. all other samples; or borderline and
low grade serous carcinomas vs. all other serous carcinomas)
were compared in one setting. The statistical significance was set
to achieve a false discovery rate below 10%. Kaplan-Meier sur-
vival plots were generated for genes correlated to survival using
WinSTAT 2007 for Microsoft Excel (Robert K. Fitch Software,
Germany). Finally, multivariate analysis was performed using
WinSTAT to assess whether the genes alone are more powerful
than known clinical parameters (stage, grade, histology).

Results
Meta-analysis of microarray data

We downloaded 829 microarrays of ovarian samples, 806
ovarian cancer samples (from datasets GSE9891, GSE14001,
GSE2109, GSE6008, GSE14764, GSE3149 and GSE15578) and

23 normal samples (from datasets GSE15578, GSE14001,
GSE3526, GSE1133, GSE2361, GSE7307 and GSE6008). The
complete normalized database containing the MAS5 expres-
sion values and clinical characteristics for all microarrays is
available at http://www.kmplot.com/ovar/@ovary_normalized.
txt.

We used the gene lists of 38 previously published ovarian-
cancer associated publications in the gene set analysis, these
are summarized in Table 2. After mapping of the published
gene sets to Affymetrix microarrays, only those having at
least 50% of their genes present on Affymetrix platform were
retained (n ¼ 16). Gene sets were analyzed as being capable
to predict the difference between normal and tumorous and
between different histology subtypes in independent analyses.
At p < 0.005, eight gene sets were capable of discriminating
between tumor and normal tissue and different histology
subtypes (see Table 3).

Survival information was published only for two studies
(GSE3149 and GSE14764) comprising 199 samples altogether.
None of the previously published gene sets was capable to
significantly predict survival in these patients.

The downloaded combined microarray dataset was used
as a new training set to identify new genes correlated to

Table 3. Significant gene sets capable to discriminate tumor and normal samples (A), and different histology subtypes (B)

First author; year No. of genes LS permutation p value KS permutation p value

(A) Discriminate tumor and normal samples

Bignotti et al.16 116 < 0.0001 < 0.0001

Donninger et al.18 659 < 0.0001 < 0.0001

Fedorowicz et al., 2009 28 < 0.0001 < 0.0001

Heinzelmann-Schwarz et al.47 20 < 0.0001 0.0006

Warrenfeltz et al., 2004 127 < 0.0001 < 0.0001

Welsh et al.14 17 < 0.0001 < 0.0001

Grisaru et al., 2007 68 < 0.0001 0.0042

Quinn et al., 2009 71 < 0.0001 0.0014

Santin et al.26 4 0.005 0.195

Zhang et al.28 7 0.007 0.071

Klinck et al.20 37 0.009 0.011

Park et al.25 26 0.048 0.234

(B) Discriminate histology subtypes

Bignotti et al.16 116 < 0.0001 < 0.0001

Donninger et al.18 659 < 0.0001 < 0.0001

Heinzelmann et al.47 20 < 0.0001 0.0007

Welsh et al.14 17 < 0.0001 0.0009

Quinn et al., 2009 71 < 0.0001 0.0023

Warrenfeltz et al., 2004 127 0.0001 < 0.0001

Santin et al.26 4 0.0009 0.0099

Mougeot et al.24 53 0.0021 0.0007

Fedorowicz et al., 2009 28 0.037 0.383

The analyses were made using GEO datasets GSE1133, GSE2361, GSE2109, GSE3149, GSE3526, GSE6008, GSE7307, GSE9891, GSE14001,
GSE14764 and GSE15578. Bold values indicate p < 0.005.
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histology subtypes and survival. The top significant discrimi-
native genes are listed in Supporting Information Table 1
and Supporting Information Table 2.

Clinical sample collection

Altogether 64 ovarian cancer samples were collected from
patients aged 60 6 11 years. The median relapse-free survival
was 24.5 months with 31 relapses and the median overall
survival was 29 months with 23 deaths. Forty-four of the
patients had high-grade serous, three low-grade serous
tumors and six patients had serous borderline tumors. Four
of the patients had a secondary breast cancer. The detailed
clinical characteristics for each of these patients are listed in
Supporting Information Table 3.

TaqMan RT-PCR measurements

As our goal was to use microarray data to establish consen-
sus discriminative genes, we included the top meta-analysis-
identified genes in the TaqMan analysis. Besides significant

genes, we also selected a set of literature-based genes associ-
ated with hormone therapy and chemotherapy response.

The expression of the selected genes was measured in
three settings: genes associated with survival, with histology
subtypes and with breast cancer pathogenesis were assessed
in independent analyses. Due to the low number of samples
in other than the high-grade serous histology subtype, only
the high-grade serous samples were compared to a pool of all
other samples. The discriminative powers of the genes are
listed in Table 1. Of the clinical variables, only stage was
associated with survival (p ¼ 0.02).

Genes associated with survival were used to construct
Kaplan-Meier survival plots. In these, samples were divided
based on comparison to the average expression of the genes
across the entire dataset; samples having lower than average
expression (0) and samples having higher expression (1) were
defined as two separate groups. The analyses were performed
for both relapse-free survival and overall survival. The
Kaplan-Meier plots based on the top two genes are shown in

Figure 2. Discriminating power of the best genes measured by RT-PCR in 64 patients. Kaplan-Meier survival plots show relapse free survival

(RFS) grouped by SNCG and MAPT and overall survival grouped by ESR2 and PGR according to the average expression of the selected

genes (0: expression below average, 1: expression above average).
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Figure 2. Finally, the genes ESR2 and PGR were also investi-
gated in the microarray datasets and both were significantly
associated with survival (p ¼ 0.007 for ESR2 and p ¼ 0.03
for PGR).

Discussion
Current molecular profiling data of ovarian cancer are al-
ready providing new insights into the genesis of ovarian can-
cer. To overcome limitations of previous studies, we gathered
several datasets from Gene Expression Omnibus to perform a
true meta-analysis of ovarian-cancer signatures. We assessed
previously published datasets related to ovarian carcinogene-
sis, histology subtypes and survival. We also established new
predictors for the discrimination of histology subtypes and
for prediction of prognosis. The results were validated using
RT-PCR in 64 ovarian cancer patients.

Although our study was designed to identify ovarian can-
cer-associated gene sets that are clinically relevant, the analy-
sis of available transcriptomic studies dealing with ovarian
cancer demonstrated merely a low efficiency. In fact, only
eight of the 16 published gene sets analyzed in our study
were capable to deliver significant discriminative power, and
none of the gene sets was capable to predict survival. The
most likely explanation for this lack of reproducibility is the
use of different technology platforms for generating the gene
expression profiles. However, several other factors can con-
tribute the clinical ovarian carcinoma samples included in
the various studies did not exhibit identical clinico-pathologi-
cal parameters, different methodologies were used for evalu-
ating the primary data and many studies were based on ex-
perimental results obtained in in vitro studies. The
fundamental differences in these factors can explain the inef-
fective confirmation by different studies. Interestingly, studies
capable to discriminate normal and cancerous ovaries were
also capable to discriminate histology subtypes.

Genomic studies have demonstrated that mucinous adeno-
carcinomas are similar to borderline tumors and to benign
cystadenomas.47,48 Additionally, mutations in K-RAS are spe-
cific for borderline tumors, low-grade tumors and mucinous

adenocarcinomas.49 These results lead to the speculations of
malignant transformation following a sequence of adenoma
to borderline tumor to invasive adenocarcinoma47,48 more
frequently than to high-grade serous carcinomas. We have
investigated a set of top genes using RT-PCR in our patients
and were capable to validate almost all genes hypothesized as
being related to histology subtypes by either microarray-anal-
ysis or literature search. These results support the hypothesis
of distinct molecular characteristics of the different histology
subtypes described in earlier studies.

In our patients, only three genes (ESR2, PGR and TSPAN8)
were correlated to overall survival and two genes (MAPT and
SNCG) to relapse-free survival. A future study with signifi-
cantly more patients (preferably over 1,000 samples) could
deliver a much more robust estimation of predictive power.

Previously, expression of the estrogen receptor (ER) was
found more frequently in low-malignant potential and low-
grade ovarian cancers, suggesting that hormonal treatment
might be effective for controlling these ovarian cancers.50

Although our meta-analysis of microarray datasets did not
identify ER as a top candidate gene, we have found differen-
tial expression of ER in high-grade serous carcinomas as well
as a correlation to survival in our ovarian cancer patients.

At the moment, neither the prognostic and predictive pa-
rameters as described are far from precise, nor are the cur-
rent chemotherapy regimens highly effective, which empha-
sizes the need to identify new biomarkers. Our results deliver
validation as a true meta-analysis for several previously pub-
lished gene sets and individual genes. Additionally, we were
able to confirm the power to discriminate histology subtypes
in a clinical cohort for a set of RT-PCR measured genes.
New analyses in the future, like RNA-seq, will enable to
directly link gene expression, genotype and phenotype,
thereby making a more complex meta-analysis possible at
different stages of biological processes.
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