180 research outputs found

    Detection of single trial power coincidence for the identification of distributed cortical processes in a behavioral context

    Get PDF
    Poster presentation: The analysis of neuronal processes distributed across multiple cortical areas aims at the identification of interactions between signals recorded at different sites. Such interactions can be described by measuring the stability of phase angles in the case of oscillatory signals or other forms of signal dependencies for less regular signals. Before, however, any form of interaction can be analyzed at a given time and frequency, it is necessary to assess whether all potentially contributing signals are present. We have developed a new statistical procedure for the detection of coincident power in multiple simultaneously recorded analog signals, allowing the classification of events as 'non-accidental co-activation'. This method can effectively operate on single trials, each lasting only for a few seconds. Signals need to be transformed into time-frequency space, e.g. by applying a short-time Fourier transformation using a Gaussian window. The discrete wavelet transform (DWT) is used in order to weight the resulting power patterns according to their frequency. Subsequently, the weighted power patterns are binarized via applying a threshold. At this final stage, significant power coincidence is determined across all subgroups of channel combinations for individual frequencies by selecting the maximum ratio between observed and expected duration of co-activation as test statistic. The null hypothesis that the activity in each channel is independent from the activity in every other channel is simulated by independent, random rotation of the respective activity patterns. We applied this procedure to single trials of multiple simultaneously sampled local field potentials (LFPs) obtained from occipital, parietal, central and precentral areas of three macaque monkeys. Since their task was to use visual cues to perform a precise arm movement, co-activation of numerous cortical sites was expected. In a data set with 17 channels analyzed, up to 13 sites expressed simultaneous power in the range between 5 and 240 Hz. On average, more than 50% of active channels participated at least once in a significant power co-activation pattern (PCP). Because the significance of such PCPs can be evaluated at the level of single trials, we are confident that this procedure is useful to study single trial variability with sufficient accuracy that much of the behavioral variability can be explained by the dynamics of the underlying distributed neuronal processes

    Neuronal avalanches recorded in the awake and sleeping monkey do not show a power law but can be reproduced by a self-organized critical model

    Get PDF
    Poster presentation: Self-organized critical (SOC) systems are complex dynamical systems that may express cascades of events, called avalanches [1]. The SOC state was proposed to govern brain function, because of its activity fluctuations over many orders of magnitude, its sensitivity to small input and its long term stability [2,3]. In addition, the critical state is optimal for information storage and processing [4]. Both hallmark features of SOC systems, a power law distribution f(s) for the avalanche size s and a branching parameter (bp) of unity, were found for neuronal avalanches recorded in vitro [5]. However, recordings in vivo yielded contradictory results [6]. Electrophysiological recordings in vivo only cover a small fraction of the brain, while criticality analysis assumes that the complete system is sampled. We hypothesized that spatial subsampling might influence the observed avalanche statistics. In addition, SOC models can have different connectivity, but always show a power law for f(s) and bp = 1 when fully sampled. This may not be the case under subsampling, however. Here, we wanted to know whether a state change from awake to asleep could be modeled by changing the connectivity of a SOC model without leaving the critical state. We simulated a SOC model [1] and calculated f(s) and bp obtained from sampling only the activity of a set of 4 × 4 sites, representing the electrode positions in the cortex. We compared these results with results obtained from multielectrode recordings of local field potentials (LFP) in the cortex of behaving monkeys. We calculated f(s) and bp for the LFP activity recorded while the monkey was either awake or asleep and compared these results to results obtained from two subsampled SOC model with different connectivity. f(s) and bp were very similar for both the experiments and the subsampled SOC model, but in contrast to the fully sampled model, f(s) did not show a power law and bp was smaller than unity. With increasing the distance between the sampling sites, f(s) changed from "apparently supercritical" to "apparently subcritical" distributions in both the model and the LFP data. f(s) and bp calculated from LFP recorded during awake and asleep differed. These changes could be explained by altering the connectivity in the SOC model. Our results show that subsampling can prevent the observation of the characteristic power law and bp in SOC systems, and misclassifications of critical systems as sub- or supercritical are possible. In addition, a change in f(s) and bp for different states (awake/asleep) does not necessarily imply a change from criticality to sub- or supercriticality, but can also be explained by a change in the effective connectivity of the network without leaving the critical state

    Higher Order Spike Synchrony in Prefrontal Cortex during Visual Memory

    Get PDF
    Precise temporal synchrony of spike firing has been postulated as an important neuronal mechanism for signal integration and the induction of plasticity in neocortex. As prefrontal cortex plays an important role in organizing memory and executive functions, the convergence of multiple visual pathways onto PFC predicts that neurons should preferentially synchronize their spiking when stimulus information is processed. Furthermore, synchronous spike firing should intensify if memory processes require the induction of neuronal plasticity, even if this is only for short-term. Here we show with multiple simultaneously recorded units in ventral prefrontal cortex that neurons participate in 3 ms precise synchronous discharges distributed across multiple sites separated by at least 500 μm. The frequency of synchronous firing is modulated by behavioral performance and is specific for the memorized visual stimuli. In particular, during the memory period in which activity is not stimulus driven, larger groups of up to seven sites exhibit performance dependent modulation of their spike synchronization

    Development of visual cortical function in infant macaques: A BOLD fMRI study.

    Get PDF
    Functional brain development is not well understood. In the visual system, neurophysiological studies in nonhuman primates show quite mature neuronal properties near birth although visual function is itself quite immature and continues to develop over many months or years after birth. Our goal was to assess the relative development of two main visual processing streams, dorsal and ventral, using BOLD fMRI in an attempt to understand the global mechanisms that support the maturation of visual behavior. Seven infant macaque monkeys (Macaca mulatta) were repeatedly scanned, while anesthetized, over an age range of 102 to 1431 days. Large rotating checkerboard stimuli induced BOLD activation in visual cortices at early ages. Additionally we used static and dynamic Glass pattern stimuli to probe BOLD responses in primary visual cortex and two extrastriate areas: V4 and MT-V5. The resulting activations were analyzed with standard GLM and multivoxel pattern analysis (MVPA) approaches. We analyzed three contrasts: Glass pattern present/absent, static/dynamic Glass pattern presentation, and structured/random Glass pattern form. For both GLM and MVPA approaches, robust coherent BOLD activation appeared relatively late in comparison to the maturation of known neuronal properties and the development of behavioral sensitivity to Glass patterns. Robust differential activity to Glass pattern present/absent and dynamic/static stimulus presentation appeared first in V1, followed by V4 and MT-V5 at older ages; there was no reliable distinction between the two extrastriate areas. A similar pattern of results was obtained with the two analysis methods, although MVPA analysis showed reliable differential responses emerging at later ages than GLM. Although BOLD responses to large visual stimuli are detectable, our results with more refined stimuli indicate that global BOLD activity changes as behavioral performance matures. This reflects an hierarchical development of the visual pathways. Since fMRI BOLD reflects neural activity on a population level, our results indicate that, although individual neurons might be adult-like, a longer maturation process takes place on a population level

    Performance- and Stimulus-Dependent Oscillations in Monkey Prefrontal Cortex During Short-Term Memory

    Get PDF
    Short-term memory requires the coordination of sub-processes like encoding, retention, retrieval and comparison of stored material to subsequent input. Neuronal oscillations have an inherent time structure, can effectively coordinate synaptic integration of large neuron populations and could therefore organize and integrate distributed sub-processes in time and space. We observed field potential oscillations (14–95 Hz) in ventral prefrontal cortex of monkeys performing a visual memory task. Stimulus-selective and performance-dependent oscillations occurred simultaneously at 65–95 Hz and 14–50 Hz, the latter being phase-locked throughout memory maintenance. We propose that prefrontal oscillatory activity may be instrumental for the dynamical integration of local and global neuronal processes underlying short-term memory

    Spike avalanches in vivo suggest a driven, slightly subcritical brain state

    Get PDF
    In self-organized critical (SOC) systems avalanche size distributions follow power-laws. Power-laws have also been observed for neural activity, and so it has been proposed that SOC underlies brain organization as well. Surprisingly, for spiking activity in vivo, evidence for SOC is still lacking. Therefore, we analyzed highly parallel spike recordings from awake rats and monkeys, anesthetized cats, and also local field potentials from humans. We compared these to spiking activity from two established critical models: the Bak-Tang-Wiesenfeld model, and a stochastic branching model. We found fundamental differences between the neural and the model activity. These differences could be overcome for both models through a combination of three modifications: (1) subsampling, (2) increasing the input to the model (this way eliminating the separation of time scales, which is fundamental to SOC and its avalanche definition), and (3) making the model slightly sub-critical. The match between the neural activity and the modified models held not only for the classical avalanche size distributions and estimated branching parameters, but also for two novel measures (mean avalanche size, and frequency of single spikes), and for the dependence of all these measures on the temporal bin size. Our results suggest that neural activity in vivo shows a mélange of avalanches, and not temporally separated ones, and that their global activity propagation can be approximated by the principle that one spike on average triggers a little less than one spike in the next step. This implies that neural activity does not reflect a SOC state but a slightly sub-critical regime without a separation of time scales. Potential advantages of this regime may be faster information processing, and a safety margin from super-criticality, which has been linked to epilepsy.DFG, 103586207, GRK 1589: Verarbeitung sensorischer Informationen in neuronalen SystemenBMBF, 01GQ1005B, Bernstein Zentrum für Computational Neuroscience, Göttingen - Kooperative Dynamiken und Adaptivität in neuronalen SystemenBMBF, 01GQ0742, Verbundprojekt Bernstein Partner: Gedächtnis-Netzwerk, Teilprojekt

    Signature of Alzheimer’s Disease in Intestinal Microbiome: Results From the AlzBiom Study

    Get PDF
    Background: Changes in intestinal microbiome composition have been described in animal models of Alzheimer’s disease (AD) and AD patients. Here we investigated how well taxonomic and functional intestinal microbiome data and their combination with clinical data can be used to discriminate between amyloid-positive AD patients and cognitively healthy elderly controls. Methods: In the present study we investigated intestinal microbiome in 75 amyloid-positive AD patients and 100 cognitively healthy controls participating in the AlzBiom study. We randomly split the data into a training and a validation set. Intestinal microbiome was measured using shotgun metagenomics. Receiver operating characteristic (ROC) curve analysis was performed to examine the discriminatory ability of intestinal microbiome among diagnostic groups. Results: The best model for discrimination of amyloid-positive AD patients from healthy controls with taxonomic data was obtained analyzing 18 genera features, and yielded an area under the receiver operating characteristic curve (AUROC) of 0.76 in the training set and 0.61 in the validation set. The best models with functional data were obtained analyzing 17 GO (Gene Ontology) features with an AUROC of 0.81 in the training set and 0.75 in the validation set and 26 KO [Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog] features with an AUROC of 0.83 and 0.77, respectively. Using ensemble learning for these three models including a clinical model with the 4 parameters age, gender, BMI and ApoE yielded an AUROC of 0.92 in the training set and 0.80 in the validation set. Discussion: In conclusion, we identified a specific Alzheimer signature in intestinal microbiome that can be used to discriminate amyloid-positive AD patients from healthy controls. The diagnostic accuracy increases from taxonomic to functional data and is even better when combining taxonomic, functional and clinical models. Intestinal microbiome represents an innovative diagnostic supplement and a promising area for developing novel interventions against AD

    Optical coherence tomography angiography (OCTA) as a new diagnostic tool in uveitis

    Get PDF
    Background: The broad spectrum of uveitis disorders requires a multimodal imaging approach in the daily practice of an ophthalmologist. As inflammatory conditions, they have in common an alteration in leukocyte migration. In this context, optical coherence tomography angiography (OCTA) might be of great value for diagnosing or following up patients with these disorders. To date, OCTA has rather been used as an additional tool besides the well-established diagnostic imaging tools, but its complementary diagnostic features become increasingly relevant, to follow disease activity and treatment response and for the understanding of pathomechanisms of various uveitis types. This review summarizes the possible applications of OCTA and its advantages and disadvantages as opposed to dye-based angiographies in uveitic diseases. Main body: Hitherto gold standards in the diagnostic workup of posterior or intermediate uveitis have been angiography on a dye-based method, which is fluorescein or indocyanine green. It gives information about the status of the blood-retinal barrier and the retinal and choroidal vasculature by visualizing diffuse leakage as a state of inflammation or complications as an ischemia or choroidal neovascularization. As noninvasive methods, fundus autofluorescence depicts the status of metabolic activity of the retinal pigment epithelium and OCT or enhanced depth imaging OCT, respectively, as a depth-resolving imaging method can supply additional information. OCTA as a non-invasive, depth-resolution imaging tool of retinal and choroidal vessels adds detailed qualitative and quantitative information of the status of retinal and choroidal vessels and bridges the gap between the mentioned conventional diagnostic tools used in uveitis. It is important, though, to be aware of its limitations, such as its susceptibility to motion artifacts, limited comparability among different devices, and restricted contribution of information regarding the grade of disease activity. Conclusion: OCTA as a non-invasive, depth-resolution imaging tool can give qualitative and quantitative information about the status of retinal and choroidal vessels, but also has certain limitations. Employing OCTA as a complementary rather than exclusive tool, it can give important additional information about the macro- and microvasculature under inflammatory circumstances. Thereby, it also contributes to the understanding of the pathophysiology of various uveitis entities
    corecore