88 research outputs found

    The nature and detection of unauthorized waste dump sites using remote sensing

    Get PDF
    Now a day’s waste disposal has become a massive tricky for environmentalist, as it is responsible for a various issue such as sanitary hygienic, ecological security, illegal dumps, lack of paved or asphalt access roads to the landfill, inadequate treatment facilities and low efficiency of public services of waste management. In the present study, we have discussed the detection of unauthorized dumps of municipal solid waste being potential raw materials for biofuel obtaining. The aim of the study is to investigate the possibility of using wide access data of remote sensing of Earth and geographic information technologies for operative detection of unauthorized waste dumps for the further extraction of waste from the environment to turn them into biofuel. The topicality of the study is substantiated with the complexity of detection of unauthorized waste dumps due to their multiplicity adjoined with unknown geographic and temporary dislocation. The universal classification of the image does not allow detecting unauthorized waste dumps and determining whether these wastes may be the source of potential raw materials for biofuel obtaining. The research results show that the developed specialized model based on the exclusion of the low hazard dumpsites allows distinguishing dump areas enriched with carbon-containing materials

    ALLIUM SATIVUM LINN. CONTAINS LINEAR ALKYLBENZENE SULFONATES THAT ALTER MEMBRANE FLUIDITY FOR THE INHIBITION OF MYCOBACTERIUM TUBERCULOSIS H37RA

    Get PDF
      Objectives: The purpose of the study is to characterize antimycobacterial phytoconstituent from ethyl acetate extract of dried bulbs of Allium sativum Linn. (Alliaceae) and elucidating the probable mode of action of the bioactive molecule.Methods: Serial extraction, Mycobacterium tuberculosis assay by agar well diffusion method, minimal inhibitory concentration by microplate alamar blue assay, Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR) spectroscopy, liquid chromatography (LC)-electrospray ionization (ESI)-mass spectrometry (MS)/MS, cell leakage assay, scanning electron microscopy (SEM), inhibition property of linear alkylbenzene sulfonate (LAS) in the presence of rifampicin on M. tuberculosis were performed.Results: Ethyl acetate extract displayed significant inhibition properties against M. tuberculosis H37Ra (MTCC 300). Subsequently, the bioactivity-guided fractionation was employed to purify the phytochemical. Analysis of FT-IR, LC-MS (ESI), 1H, and13C-NMR spectrum revealed that the bioactive phytochemicals are the variants of LAS, with C12-alkyl being predominant, and the minimum inhibitory concentration was found to be 5.56 μg/ml. Morphological examination by SEM and cell leakage assay indicated that these molecules change the membrane fluidity.Conclusion: The results thus suggest the possibility of using low concentrations of LAS to effect changes in membrane fluidity, thereby enhancing the efficacy of antibiotic treatment

    Allium sativum linn. contains linear alkylbenzene sulfonates that alter membrane fluidity for the inhibition of Mycobacterium tuberculosis H37RA

    Get PDF
    Objectives: The purpose of the study is to characterize antimycobacterial phytoconstituent from ethyl acetate extract of dried bulbs of Allium sativum Linn. (Alliaceae) and elucidating the probable mode of action of the bioactive molecule. Methods: Serial extraction, Mycobacterium tuberculosis assay by agar well diffusion method, minimal inhibitory concentration by microplate alamar blue assay, Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR) spectroscopy, Liquid Chromatography (LC)-electrospray ionization (ESI)-mass spectrometry (MS)/MS, cell leakage assay, Scanning Electron Microscopy (SEM), inhibition property of Linear Alkylbenzene Sulfonate (LAS) in the presence of rifampicin on M. tuberculosis were performed. Results: Ethyl acetate extract displayed significant inhibition properties against M. tuberculosis H37Ra (MTCC 300). Subsequently, the bioactivity-guided fractionation was employed to purify the phytochemical. Analysis of FT-IR, LC-MS (ESI), 1H and 13C-NMR spectrum revealed that the bioactive phytochemicals are the variants of LAS, with C12-alkyl being predominant, and the minimum inhibitory concentration was found to be 5.56 μg/ml. Morphological examination by SEM and cell leakage assay indicated that these molecules change the membrane fluidity. Conclusion: The results thus suggest the possibility of using low concentrations of LAS to effect changes in membrane fluidity, thereby enhancing the efficacy of antibiotic treatment

    Human prostatic Acid phosphatase: structure, function and regulation.

    Get PDF
    Human prostatic acid phosphatase (PAcP) is a 100 kDa glycoprotein composed of two subunits. Recent advances demonstrate that cellular PAcP (cPAcP) functions as a protein tyrosine phosphatase by dephosphorylating ErbB-2/Neu/HER-2 at the phosphotyrosine residues in prostate cancer (PCa) cells, which results in reduced tumorigenicity. Further, the interaction of cPAcP and ErbB-2 regulates androgen sensitivity of PCa cells. Knockdown of cPAcP expression allows androgen-sensitive PCa cells to develop the castration-resistant phenotype, where cells proliferate under an androgen-reduced condition. Thus, cPAcP has a significant influence on PCa cell growth. Interestingly, promoter analysis suggests that PAcP expression can be regulated by NF-κB, via a novel binding sequence in an androgen-independent manner. Further understanding of PAcP function and regulation of expression will have a significant impact on understanding PCa progression and therapy

    Androgens upregulate Cdc25C protein by inhibiting its proteasomal and lysosomal degradation pathways.

    Get PDF
    Cdc25C is a cell cycle protein of the dual specificity phosphatase family essential for activating the cdk1/Cyclin B1 complex in cells entering into mitosis. Since altered cell cycle is a hallmark of human cancers, we investigated androgen regulation of Cdc25C protein in human prostate cancer (PCa) cells, including androgen-sensitive (AS) LNCaP C-33 cells and androgen-independent (AI) LNCaP C-81 as well as PC-3 cells. In the regular culture condition containing fetal bovine serum (FBS), Cdc25C protein levels were similar in these PCa cells. In a steroid-reduced condition, Cdc25C protein was greatly decreased in AS C-33 cells but not AI C-81 or PC-3 cells. In androgen-treated C-33 cells, the Cdc25C protein level was greatly elevated, following a dose- and a time-dependent manner, correlating with increased cell proliferation. This androgen effect was blocked by Casodex, an androgen receptor blocker. Nevertheless, epidermal growth factor (EGF), a growth stimulator of PCa cells, could only increase Cdc25C protein level by about 1.5-fold. Altered expression of Cdc25C in C-33 cells and PC-3 cells by cDNA and/or shRNA transfection is associated with the corresponding changes of cell growth and Cyclin B1 protein level. Actinomycin D and cycloheximide could only partially block androgen-induced Cdc25C protein level. Treatments with both proteasomal and lysosomal inhibitors resulted in elevated Cdc25C protein levels. Immunoprecipitation revealed that androgens reduced the ubiquitination of Cdc25C proteins. These results show for the first time that Cdc25C protein plays a role in regulating PCa cell growth, and androgen treatments, but not EGF, greatly increase Cdc25C protein levels in AS PCa cells, which is in part by decreasing its degradation. These results can lead to advanced PCa therapy via up-regulating the degradation pathways of Cdc25C protein

    Inhibition of hedgehog signaling improves the anti-carcinogenic effects of docetaxel in prostate cancer.

    Get PDF
    The establishment of docetaxel-based chemotherapeutic treatments has improved the survival of castration-resistant prostate cancer (CRPC) patients. However, most patients develop resistance supporting the development of therapy. The current study was undertaken to establish the therapeutic benefit to target hedgehog signaling cascade using GDC-0449 to improve the efficacy of chemotherapeutic drug, docetaxel. Here, we show that the combination of GDC-0449 plus docetaxel inhibited the proliferation of WPE1-NB26 cells and PC3 cells via a blockade of G1 and G2M phases. The combined treatment significantly inhibited PC cell migration in vitro. Moreover, the apoptotic effect induced by GDC-0449 plus docetaxel on PC3 cells was mediated, at least partly, via the mitochondrial membrane depolarization, H2O2 production and caspase cascade activation. Interestingly, GDC-0449 was effective at inhibiting the prostasphere formation, inducing the prostasphere disintegration and apoptotic death of side population (SP) from PC3 cells and reversing the resistance of SP cells to docetaxel. In addition, GDC-0449 plus docetaxel also have shown a greater anti-tumoral growth inhibitory effect on PC3 cell xenografts. These findings support the use of the hedgehog inhibitor GDC-0449, which is currently in clinical trials, for improving the anticarcinogenic efficacy of docetaxel-based chemotherapeutic treatments against locally advanced, AI and metastatic PC

    Cellular prostatic acid phosphatase (cPAcP) serves as a useful biomarker of histone deacetylase (HDAC) inhibitors in prostate cancer cell growth suppression.

    Get PDF
    BACKGROUND: Prostate cancer (PCa) is the most commonly diagnosed solid tumor and the second leading cancer death in the United States, and also one of the major cancer-related deaths in Chinese. Androgen deprivation therapy (ADT) is the first line treatment for metastatic PCa. PCa ultimately relapses with subsequent ADT treatment failure and becomes castrate-resistant (CR). It is important to develop effective therapies with a surrogate marker towards CR PCa. METHOD: Histone deacetylase (HDAC) inhibitors were examined to determine their effects in androgen receptor (AR)/cellular prostatic acid phosphatase (cPAcP)-positive PCa cells, including LNCaP C-33, C-81, C4-2 and C4-2B and MDA PCa2b androgen-sensitive and androgen-independent cells, and AR/cPAcP-negative PCa cells, including PC-3 and DU 145 cells. Cell growth was determined by cell number counting. Western blot analyses were carried out to determine AR, cPAcP and PSA protein levels. RESULTS: cPAcP protein level was increased by HDAC inhibitor treatment. Valproic acid, a HDAC inhibitor, suppressed the growth of AR/cPAcP-positive PCa cells by over 50% in steroid-reduced conditions, higher than on AR/cPAcP-negative PCa cells. Further, HDAC inhibitor pretreatments increased androgen responsiveness as demonstrated by PSA protein level quantitation. CONCLUSION: Our results clearly demonstrate that HDAC inhibitors can induce cPAcP protein level, increase androgen responsiveness, and exhibit higher inhibitory activities on AR/cPAcP-positive PCa cells than on AR/cPAcP-negative PCa cells. Upon HDAC inhibitor pretreatment, PSA level was greatly elevated by androgens. This data indicates the potential clinical importance of cPAcP serving as a useful biomarker in the identification of PCa patient sub-population suitable for HDAC inhibitor treatment

    Acinar Transformed Ductal Cells Exhibit Differential Mucin Expression in a Tamoxifen-Induced Pancreatic Ductal Adenocarcinoma Mouse Model

    Get PDF
    Pancreatic cancer (PC) is acquired postnatally; to mimic this scenario, we developed an inducible KrasG12D; Ptf1a-CreER™ (iKC) mouse model, in which Kras is activated postnatally at week 16 upon tamoxifen (TAM) administration. Upon TAM treatment, iKC mice develop pancreatic intraepithelial neoplasia (PanIN) lesions and PC with metastasis at the fourth and fortieth weeks, respectively, and exhibited acinar-to-ductal metaplasia (ADM) and transdifferentiation. Kras activation upregulated the transcription factors Ncoa3, p-cJun and FoxM1, which in turn upregulated expression of transmembrane mucins (Muc1, Muc4 and Muc16) and secretory mucin (Muc5Ac). Interestingly, knockdown of KrasG12D in multiple PC cell lines resulted in downregulation of MUC1, MUC4, MUC5AC and MUC16. In addition, iKC mice exhibited ADM and transdifferentiation. Our results show that the iKC mouse more closely mimics human PC development and can be used to investigate pancreatic ductal adenocarcinoma (PDAC) biomarkers, early onset of PDAC, and ADM. The iKC model can also be used for preclinical strategies such as targeting mucin axis alone or in combination with neo-adjuvant, immunotherapeutic approaches and to monitor chemotherapy response

    Implementation of higher order thinking skills in teaching of science: a case study in Malaysia

    Get PDF
    Higher order thinking skills (HOTS) is a skill that should be present in every teaching. Teaching science particularly require teachers to be skillful in planning learning activities that can inculcate thinking skills among students. This study aims to explore the perceptions of science teachers in the implementation higher order thinking skills in teaching science. This is a qualitative case study involving three science teachers who teaches in government school, private school and private tuition center respectively. Data were collected through interviews only. Data were then categorized to form themes for the study. The focus of the study was teachers’ perspective, towards HOTS, its application, assessment of HOTS and the constraints. The results show that the teachers are aware and they are applying HOTS in their teaching. However, they believe they are hindered by some constraints. Therefore this study concluded that knowledge and competence are crucial to ensure quality the implementation of HOTS
    corecore