9 research outputs found

    Formal Model-Based Assurance Cases in Isabelle/SACM : An Autonomous Underwater Vehicle Case Study

    Get PDF
    Isabelle/SACM is a tool for automated construction of model-based assurance cases with integrated formal methods, based on the Isabelle proof assistant. Assurance cases show how a system is safe to operate, through a human comprehensible argument demonstrating that the requirements are satisfied, using evidence of various provenances. They are usually required for certification of critical systems, often with evidence that originates from formal methods. Automating assurance cases increases rigour, and helps with maintenance and evolution. In this paper we apply Isabelle/SACM to a fragment of the assurance case for an autonomous underwater vehicle demonstrator. We encode the metric unit system (SI) in Isabelle, to allow modelling requirements and state spaces using physical units. We develop a behavioural model in the graphical RoboChart state machine language, embed the artifacts into Isabelle/SACM, and use it to demonstrate satisfaction of the requirements

    Multiple QTLs linked to agro-morphological and physiological traits related to drought tolerance in potato.

    Get PDF
    Dissection of the genetic architecture of adaptation and abiotic stress-related traits is highly desirable for developing drought-tolerant potatoes and enhancing the resilience of existing cultivars, particularly as agricultural production in rain-fed areas may be reduced by up to 50 % by 2020. The “DMDD” potato progeny was developed at International Potato Center (CIP) by crossing the sequenced double monoploid line DM and a diploid cultivar of the Solanum tuberosum diploid Andigenum Goniocalyx group. Recently, a high-density integrated genetic map based on single nucleotide polymorphism (SNP), diversity array technology (DArT), simple sequence repeats (SSRs), and amplified fragment length polymorphism (AFLP) markers was also made available for this population. Two trials were conducted, in greenhouse and field, for drought tolerance with two treatments each, well-watered and terminal drought, in which watering was suspended 60 days after planting. The DMDD population was evaluated for agro-morphological and physiological traits before and after initiation of stress, at multiple time points. Two dense parental genetic maps were constructed using published genotypic data, and quantitative trait locus (QTL) analysis identified 45 genomic regions associated with nine traits in well-watered and terminal drought treatments and 26 potentially associated with drought stress. In this study, the strong influence of environmental factors besides water shortage on the expression of traits and QTLs reflects the multigenic control of traits related to drought tolerance. This is the first study to our knowledge in potato identifying QTLs for drought-related traits in field and greenhouse trials, giving new insights into genetic architecture of drought-related traits. Many of the QTLs identified have the potential to be used in potato breeding programs for enhanced drought tolerance

    Role of bacterial biofertilizers in agriculture and forestry

    No full text

    Plant probiotic bacteria: solutions to feed the world

    No full text
    corecore