11 research outputs found

    A Biomedically Enriched Collection of 7000 Human ORF Clones

    Get PDF
    We report the production and availability of over 7000 fully sequence verified plasmid ORF clones representing over 3400 unique human genes. These ORF clones were derived using the human MGC collection as template and were produced in two formats: with and without stop codons. Thus, this collection supports the production of either native protein or proteins with fusion tags added to either or both ends. The template clones used to generate this collection were enriched in three ways. First, gene redundancy was removed. Second, clones were selected to represent the best available GenBank reference sequence. Finally, a literature-based software tool was used to evaluate the list of target genes to ensure that it broadly reflected biomedical research interests. The target gene list was compared with 4000 human diseases and over 8500 biological and chemical MeSH classes in ∼15 Million publications recorded in PubMed at the time of analysis. The outcome of this analysis revealed that relative to the genome and the MGC collection, this collection is enriched for the presence of genes with published associations with a wide range of diseases and biomedical terms without displaying a particular bias towards any single disease or concept. Thus, this collection is likely to be a powerful resource for researchers who wish to study protein function in a set of genes with documented biomedical significance

    FBXO25-associated nuclear domains: A novel subnuclear structure

    No full text
    Skp1, Cul1, Rbx1, and the FBXO25 protein form a functional ubiquitin ligase complex. Here, we investigate the cellular distribution of FBXO25 and its colocalization with some nuclear proteins by using immunochemical and biochemical approaches. FBXO25 was monitored with affinity-purified antibodies raised against the recombinant fragment spanning residues 2-62 of the FBXO25 sequence. FBXO25 protein was expressed in all mouse tissues tested except striated muscle, as indicated by immunoblot analysis. Confocal analysis revealed that the endogenous FBXO25 was partially concentrated in a novel dot-like nuclear domain that is distinct from clastosomes and other well-characterized structures. These nuclear compartments contain a high concentration of ubiquitin conjugates and at least two other components of the ubiquitin-proteasome system: 20S proteasome and Skp1. We propose to name these compartments FBXO25-associated nuclear domains. Interestingly, inhibition of transcription by actinomycin D or heat-shock treatment drastically affected the nuclear organization of FBXO25-containing structures, indicating that they are dynamic compartments influenced by the transcriptional activity of the cell. Also, we present evidences that an FBXO25-dependent ubiquitin ligase activity prevents aggregation of recombinant polyglutamine-containing huntingtin protein in the nucleus of human embryonic kidney 293 cells, suggesting that this protein can be a target for the nuclear FBXO25 mediated ubiquitination.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo [FAPESP][03/08055-7]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [06/58140-9](FAEPA) Fundacao de Apoio ao Ensino, Pesquisa e Assistenci

    Myosin Va phosphorylated on ser(1650) is found in nuclear speckles and redistributes to nucleoli upon inhibition of transcription

    No full text
    Nuclear actin and nuclear myosins have been implicated in the regulation of geneexpression in vertebrate cells. Myosin V is a class of actin-based motor proteins involved in cytoplasmic vesicle transport and anchorage, spindle-pole alignment and mRNA translocation. In this study, myosin-Va, phosphorylated on a conserved serine in the tail domain (phospho-ser(1650) MVa), was localized to subnuclear compartments. A monoclonal antibody, 9E6, raised against a peptide corresponding to phosphoserine(1650) and flanking regions of the murine myosin Va sequence, was immunoreactive to myosin Va heavy chain in cellular and nuclear extracts of HeLa cells, PC12 cells and B16-F10 melanocytes. Immunofluorescence microscopy with this antibody revealed discrete irregular spots within the nucleoplasm that colocalized with SC35, a splicing factor that earmarks nuclear speckles. Phospho-ser(1650) MVa was not detected in other nuclear compartments, such as condensed chromatin, Cajal bodies, gems and perinucleolar caps. Although nucleoli also were not labeled by 9E6 under normal conditions, inhibition of transcription in HeLa cells by actinomycin D caused the redistribution of phospho-ser(1650) MVa to nucleoli, as well as separating a fraction of phosphoser(1650) MVa from SC35 into near-neighboring particles. These observations indicate a novel role for myosin Va in nuclear compartmentalization and offer a new lead towards the understanding of actomyosin-based gene regulation

    Identification of FBXO25-interacting proteins using an integrated proteomics approach

    No full text
    FBXO25 is one of 68 human F-box proteins that serve as specificity factors for a family of ubiquitin ligases composed of Skp1, Rbx1, Cullin1 and F-box protein (SCF1) that are involved in targeting proteins for destruction across the ubiquitin proteasome system. We recently reported that the FBXO25 protein accumulates in novel subnuclear structures named FBXO25-associated nuclear domains (FANDs). Combining two-step affinity purification followed by mass spectrometry with a classical two-hybrid screen, we identified 132 novel potential FBXO25 interacting partners. One of the identified proteins, -actin, physically interacts through its N-terminus with FBXO25 and is enriched in the FBXO25 nuclear compartments. Inhibitors of actin polymerization promote a significant disruption of FANDs, indicating that they are compartments influenced by the organizational state of actin in the nucleus. Furthermore, FBXO25 antibodies interfered with RNA polymerase II transcription in vitro. Our results open new perspectives for the understanding of this novel compartment and its nuclear functions
    corecore