19 research outputs found

    Glucocorticoid receptor Thr524 phosphorylation by MINK1 induces interactions with 14-3-3 protein regulators

    Get PDF
    The glucocorticoid receptor (GR) is a ligand-dependent transcription factor that plays a central role in inflammation. The GR activity is also modulated via protein-protein interactions, including binding of 14-3-3 proteins induced by GR phosphorylation. However, the specific phosphorylation sites on the GR that trigger these interactions and their functional consequences are less clear. Hence, we sought to examine this system in more detail. We used phosphorylated GR peptides, biophysical studies, and X-ray crystallography to identify key residues within the ligand-binding domain of the GR, T524 and S617, whose phosphorylation results in binding of the representative 14-3-3 protein 14-3-3ζ. A kinase screen identified misshapen-like kinase 1 (MINK1) as responsible for phosphorylating T524 and Rho-associated protein kinase 1 for phosphorylating S617; cell-based approaches confirmed the importance of both GR phosphosites and MINK1 but not Rhoassociated protein kinase 1 alone in inducing GR-14-3-3 binding. Together our results provide molecular-level insight into 14-3-3-mediated regulation of the GR and highlight both MINK1 and the GR-14-3-3 axis as potential targets for future therapeutic intervention

    Conservative management of retinoblastoma : Challenging orthodoxy without compromising the state of metastatic grace. "Alive, with good vision and no comorbidity"

    Get PDF
    Correction: Volume: 78 Article Number: 100857 DOI: 10.1016/j.preteyeres.2020.100857 Published: SEP 2020Retinoblastoma is lethal by metastasis if left untreated, so the primary goal of therapy is to preserve life, with ocular survival, visual preservation and quality of life as secondary aims. Historically, enucleation was the first successful therapeutic approach to decrease mortality, followed over 100 years ago by the first eye salvage attempts with radiotherapy. This led to the empiric delineation of a window for conservative management subject to a "state of metastatic grace" never to be violated. Over the last two decades, conservative management of retinoblastoma witnessed an impressive acceleration of improvements, culminating in two major paradigm shifts in therapeutic strategy. Firstly, the introduction of systemic chemotherapy and focal treatments in the late 1990s enabled radiotherapy to be progressively abandoned. Around 10 years later, the advent of chemotherapy in situ, with the capitalization of new routes of targeted drug delivery, namely intra-arterial, intravitreal and now intracameral injections, allowed significant increase in eye preservation rate, definitive eradication of radiotherapy and reduction of systemic chemotherapy. Here we intend to review the relevant knowledge susceptible to improve the conservative management of retinoblastoma in compliance with the "state of metastatic grace", with particular attention to (i) reviewing how new imaging modalities impact the frontiers of conservative management, (ii) dissecting retinoblastoma genesis, growth patterns, and intraocular routes of tumor propagation, (iii) assessing major therapeutic changes and trends, (iv) proposing a classification of relapsing retinoblastoma, (v) examining treatable/preventable disease-related or treatment-induced complications, and (vi) appraising new therapeutic targets and concepts, as well as liquid biopsy potentiality.Peer reviewe

    14-3-3 modulation of the inflammatory response

    No full text
    Regulation of inflammation is a central part of the maintenance of homeostasis by the immune system. One important class of regulatory protein that has been shown to have effects on the inflammatory process are the 14−3-3 proteins. Herein we describe the roles that have been identified for 14−3-3 in regulation of the inflammatory response. These roles encompass regulation of the response that affect inflammation at the genetic, molecular and cellular levels. At a genetic level 14−3-3 is involved in the regulation of multiple transcription factors and affects the transcription of key effectors of the immune response. At a molecular level many of the constituent parts of the inflammatory process, such as pattern recognition receptors, protease activated receptors and cytokines are regulated through phosphorylation and recognition by 14−3-3 whilst disruption of the recognition processes has been observed to result in clinical syndromes. 14−3-3 is also involved in the regulation of cell proliferation and differentiation, this has been shown to affect the immune system, particularly T- and B-cells. Finally, we discuss how abnormal levels of 14−3-3 contribute to undesirable immune responses and chronic inflammatory conditions

    Optical coherence tomography (OCT) to image active and inactive retinoblastomas as well as retinomas

    No full text
    Purpose: To illustrate Optical Coherence Tomography (OCT) images of active and inactive retinoblastoma (Rb) tumours. Methods: Current observational study included patients diagnosed with retinoblastoma and retinoma who were presented at Amsterdam UMC and Jules-Gonin Eye Hospital, between November 2010 and October 2017. Patients aged between 0 and 4 years were imaged under general anaesthesia with handheld OCT in supine position. Patients older than 4 years were imaged with the conventional OCT (Heidelberg Engineering, Heidelberg Spectralis, Germany). All patients included were divided into two groups: active and inactive tumours (retinoma and regression patterns). Patients’ medical records and OCT images were analysed during meetings via discussions by ophthalmologists and physicists. Results: Twelve Dutch and 8 Swiss patients were divided into two groups: 2 patients with active tumour versus 18 patients with inactive tumour. Subsequently, inactive group could be divided in two groups, which consisted of 10 patients with retinoma and 8 patients with different regression pattern types. Of all included patients, 15 were male (75%). Median age at diagnosis was 18.0 months (range 0.19–715.2 months). A total of 12 retinoblastoma (active and inactive) and 8 retinoma foci were investigated by OCT. No distinction could be made between active and inactive tumours using only OCT. Conclusion: Optical coherence tomography alone cannot distinguish between active and inactive Rbs. However, handheld OCT adds useful information to the established imaging techniques in the monitoring and follow-up of retinoblastoma patients. With this study, we provide an overview of OCT images of active and inactive Rbs

    Identification of Phosphate-Containing Compounds as New Inhibitors of 14-3-3/c-Abl Protein-Protein Interaction

    No full text
    The 14-3-3/c-Abl protein-protein interaction (PPI) is related to carcinogenesis and in particular to pathogenesis of chronic myeloid leukemia (CML). Previous studies have demonstrated that molecules able to disrupt this interaction improve the nuclear translocation of c-Abl, inducing apoptosis in leukemia cells. Through an X-ray crystallography screening program, we have identified two phosphate-containing compounds, inosine monophosphate (IMP) and pyridoxal phosphate (PLP), as binders of human 14-3-3σ, by targeting the protein amphipathic groove. Interestingly, they also act as weak inhibitors of the 14-3-3/c-Abl PPI, demonstrated by NMR, SPR, and FP data. A 37-compound library of PLP and IMP analogues was investigated using a FP assay, leading to the identification of three further molecules acting as weak inhibitors of the 14-3-3/c-Abl complex formation. The antiproliferative activity of IMP, PLP, and the three derivatives was tested against K-562 cells, showing that the parent compounds had the most pronounced effect on tumor cells. PLP and IMP were also effective in promoting the c-Abl nuclear translocation in c-Abl overexpressing cells. Further, these compounds demonstrated low cytotoxicity on human Hs27 fibroblasts. In conclusion, our data suggest that 14-3-3σ targeting compounds represent promising hits for further development of drugs against c-Abl-dependent cancers

    CCDC 2190057: Experimental Crystal Structure Determination

    No full text
    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures
    corecore