8 research outputs found

    Characterizing the Assemblage of Wood-Decay Fungi in the Forests of Northwest Arkansas

    No full text
    The study reported herein represents an effort to characterize the wood-decay fungi associated with three study areas representative of the forest ecosystems found in northwest Arkansas. In addition to specimens collected in the field, small pieces of coarse woody debris (usually dead branches) were collected from the three study areas, returned to the laboratory, and placed in plastic incubation chambers to which water was added. Fruiting bodies of fungi appearing in these chambers over a period of several months were collected and processed in the same manner as specimens associated with decaying wood in the field. The internal transcribed spacer (ITS) ribosomal DNA region was sequenced, and these sequences were blasted against the NCBI database. A total of 320 different fungal taxa were recorded, the majority of which could be identified to species. Two hundred thirteen taxa were recorded as field collections, and 68 taxa were recorded from the incubation chambers. Thirty-nine sequences could be recorded only as unidentified taxa. Collectively, the specimens of fungi collected in the forests of northwest Arkansas belong to 64 and 128 families and genera, respectively

    RETRACTED: Forensic applications and genetic characterization of Liaoning Han population revealed by extended set of autosomal STRs

    No full text
    ABSTRACT Background Microsatellites or short tandem repeats (STRs) are considered the gold standard for forensic investigations and autosomal STRs are used for routine forensic personal identification. Aim To provide a precise population database on an extended set of STRs which has never been done before and explore the forensic characteristics of 20 autosomal STRs. Subjects and methods In the current study, we explored the genetic characteristics of 20 STRs loci in 1138 unrelated Han individuals using Goldeneye® 20A multiplex amplification system kit in the Liaoning Han population. Additionally, phylogenetic analysis based on the Nei's standard genetic distance was performed between the Han population and other relevant populations. Results A total of 253 alleles were observed while allelic frequencies ranged from 0.00043 to 0.5369. The combined discrimination power was 99.99999999999999999999789% and the combined exclusion power was 99.999998231%. Most of the loci were in HWE while only five pairs were out of LE. Population genetic analysis showed that the Han population has similarities with other East Asian populations. Conclusion GoldenEyeTM 20A kit detects high diversity in the Liaoning Han population. These STRs which are part of this kit can be used for forensic investigations. Population genetic analysis showed that the Han population is different from the minority populations of Xinjiang

    Efficacy of Mushroom Metabolites (Pleurotus ostreatus) as A Natural Product for the Suppression of Broomrape Growth (Orobanche crenata Forsk) in Faba Bean Plants

    No full text
    Broomrape parasitism on faba bean (Vicia faba L.) is the most destructive factor for this crop in Egypt. Pot experiments were conducted during the two successive seasons 2017/2018 and 2018/2019 to study the mitigation of broomrape stress on faba bean using a ten-fold dilution of 10% (w/v) spent mushroom substrate extract (SMSE) of Pleurotus ostreatus and the same dilution of culture filtrate of mushroom (MCF) grown in potato dextrose broth (PDB) at a rate of 48 l hectare−1 compared with the commercial herbicide Roundup (Glyphosate 48% emulsifiable concentrate) at a rate of 144 cm3 ha−1 on the two varieties (Misr3 and Sakha3) cultivated in broomrape-infested soil. The treatments include the use of mushroom products as foliar spray and/or soil amendment in addition to Roundup spraying as a recommended treatment. Using Gas Chromatography-Mass Spectrometry (GC-MS) spectroscopy, our results indicate that the major components of the two mushroom products were bioactive compounds such as polyphenol and high molecular weight aliphatic and aromatic hydrocarbons that may interfere with parasite and host metabolism. These results indicated that SMSE of P. ostreatus and MCF of the same mushroom grown in potato dextrose broth (PDB) gave the best control of broomrape, and increased plant height, root length, leaf area, chlorophyll concentration, relative water content and seed yield (g plant−1), as well as anatomical characters of leaves in the two faba bean varieties (Misr3 and Sakha3), such as upper and lower epidermis, palisade tissue, spongy tissue and vascular bundles. Additionally, electrolyte leakage was decreased in the treated plants compared to control plants and the plants treated with Roundup (glyphosate) because of the important role of SMSE and MCF in the improvement of faba bean water status

    Evaluation of Silicon and Proline Application on the Oxidative Machinery in Drought-Stressed Sugar Beet

    No full text
    Drought stress deleteriously affects growth, development and productivity in plants. So, we examined the silicon effect (2 mmol) and proline (10 mmol) individually or the combination (Si + proline) in alleviating the harmful effect of drought on total phenolic compounds, reactive oxygen species (ROS), chlorophyll concentration and antioxidant enzymes as well as yield parameters of drought-stressed sugar beet plants during 2018/2019 and 2019/2020 seasons. Our findings indicated that the root diameter and length (cm), root and shoot fresh weights (g plant−1) as well as root and sugar yield significantly decreased in sugar beet plants under drought. Relative water content (RWC), nitrogen (N), phosphorus (P) and potassium (K) contents and chlorophyll (Chl) concentration considerably reduced in stressed sugar beet plants that compared with control in both seasons. Nonetheless, lipid peroxidation (MDA), electrolyte leakage (EL), hydrogen peroxide (H2O2) and superoxide (O2●−) considerably elevated as signals of drought. Drought-stressed sugar beet plants showed an increase in proline accumulation, total phenolic compounds and up-regulation of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) activity to mitigate drought effects. Si and proline individually or the combination Si + proline considerably increased root and sugar yield, sucrose%, Chl concentration and RWC, MDA and EL were remarkably reduced. The treatments led to adjust proline and total phenolic compounds as well as CAT and SOD activity in stressed sugar beet plants. We concluded that application of Si + proline under drought stress led to improve the resistance of sugar beet by regulating of proline, antioxidant enzymes, phenolic compounds and improving RWC, Chl concentration and Nitrogen, Phosphorus and Potassium (NPK) contents as well as yield parameters

    Ridge-Furrow Mulching Enhances Capture and Utilization of Rainfall for Improved Maize Production under Rain-Fed Conditions

    No full text
    The capture and utilization of rainwater by crops under various mulching conditions have great importance in agriculture production systems, especially in dry-prone regions. Understanding the effect of mulching on rainwater use efficiency growth and yield of a crop is very important. For this purpose, field experiments were conducted in 2017 and 2018 to evaluate the potential of ridge-furrow mulching on maize growth and development under rain-fed conditions. The field study compared four treatments, i.e., ridge-furrow without mulch (WM), black plastic mulch (BM), transparent plastic mulch (TM) and grass mulch (GM). The BM treatment consistently increased the soil moisture and temperature, resulting in earlier emergence, as well as increased plant height and plant biomass, compared to the WM treatment. Compared to WM, the two-years mean yield of maize with BM, TM and GM were recorded to be increased by 33.6%, 28.1% and 10.8%, respectively. The BM produced a maximal crop growth rate at 90 days after sowing (DAS) as specified by a greater leaf area index. Transpiration rate and leaf stomatal conductance were significantly higher with BM and TM than with WM, however, the BM treatment showed the highest net photosynthetic rate in both years. Net income for the BM treatment was the highest (USD 1226 ha−1) of all the treatments and USD 335 ha−1 greater than WM. As growth, yield and net income of maize were improved with BM, therefore this treatment was found to be the most effective for maize production in rain-fed conditions. This system is evaluated at a small scale, hence to maximize its effectiveness on a large scale, a simulation design needs to be developed

    Synthesis of New Naphthyl Aceto Hydrazone-Based Metal Complexes: Micellar Interactions, DNA Binding, Antimicrobial, and Cancer Inhibition Studies

    No full text
    In the present study, naphthyl acetohydrazide (HL) ligand was prepared and used for the synthesis of new six amorphous transition metal (Co(II), Ni(II), Cu(II), Zn(II), Pb(II), Cd(II)) complexes. All the compounds were characterized by elemental analysis, UV-vis, FT-IR, 1H- and 13C-NMR, and Matrix-Assisted Laser Desorption Ionization (MALDI). The solubilization study was carried out by estimating the interaction between the metal complexes with surfactants viz. sodium stearate (SS) and Cetyltrimethylammonium bromide (CTAB). UV-Visible spectroscopy was employed to determine partitioning and binding parameters, whereas electrical conductivity measurements were employed to estimate critical micellar concentration (CMC), the extent of dissociation, and free energy of micellization. The CT-DNA interaction of synthesized compounds with DNA represents the major groove binding. The synthesized ligand and metal complexes were also tested against bacterial and fungal strains and it has been observed that Cu(II) complex is active against all the strains except Candida albicans, while Cd(II) complex is active against all bacterial and fungal strains except Pseudomonas. Among all compounds, only the Pd(II) complex shows reasonable activity against cervical cancer HeLa cell lines, representing 97% inhibition

    Isolation and Characterization of Plant Growth Promoting Endophytic Bacteria from Desert Plants and Their Application as Bioinoculants for Sustainable Agriculture

    No full text
    Desert plants are able to survive under harsh environmental stresses inherent to arid and semiarid regions due to their association with bacterial endophytes. However, the identity, functions, and the factors that influence the association of bacterial endophytes with desert plants are poorly known. These bacterial endophytes can be used as an untapped resource to favor plant growth and development in agro-ecosystems of arid regions. The present study is therefore focused on the isolation and identification of bacterial endophytes from two native medicinal plants (Fagonia mollis Delile and Achillea fragrantissima (Forssk) Sch. Bip.) growing spontaneously in the arid region of the South Sinai (Egypt), and characterization of their plant growth promoting (PGP) traits. Thirteen putative bacterial endophytes were isolated from the leaves of both plant species and characterized for their plant growth promoting abilities using molecular and biochemical approaches, as well as greenhouse trials. Selected endophytic bacterial strains were applied to maize plants (Zea mays L. var. Single cross Pioneer 30K08) to further evaluate their PGP abilities under greenhouse conditions. Isolated bacterial strains have variable plant growth promoting activities. Among these activities, isolated bacterial endophytes have the efficacy of phosphate solubilizing with clear zones ranging from 7.6 ± 0.3 to 9.6 ± 0.3 mm. Additionally, the obtained bacterial endophytes increased the productivity of indole acetic acid (IAA) in broth media from 10 to 60 µg·mL−1 with increasing tryptophan concentration from 1 to 5 mg·mL−1. Bacillus and Brevibacillus strains were frequently isolated from the leaves of both plant species, and had significant positive effects on plant growth and shoot phosphorus (P) and nitrogen (N) contents. Results suggest that these endophytes are good candidates as plant growth promoting inoculants to help reduce chemical input in conventional agricultural practices and increase nutrient uptake and stress resilience in plant species
    corecore