8 research outputs found

    Métodos y modelos para la planificación de operaciones en cadenas de suministro caracterizadas por la falta de homogeneidad en el producto. Aplicación al sector cerámico

    Full text link
    Tesis por compendio[EN] Lack of Homogeneity in the Product (LHP) appears in some production processes which incorporate raw materials coming directly from nature and/or production processes with operations which cause some heterogeneity in the characteristics of the outputs obtained respect to certain attributes. The result is the existence of several references (subtypes) of the same product which differ in some characteristics relevant to customers and this aspect becomes a problem when customers require homogeneous units in their orders. Supply Chains (SC) in sectors with this problem, such as ceramic, wood, textiles, fruit or meat, among others, are forced to include one or more classification stages along the production process whose location and classification criteria depend on each specific sector. The classification of the same element in several subtypes increases the number of references and the volume of information to process, complicating management system. In addition, after each classification stage, the quantity of each subtype will only be known after the production is finished which introduces a new type of LHP inherent uncertainty: uncertainty in the quantities of each subtype in different planned lots. This uncertainty is a problem when the customer orders must commit and be served from homogeneous units. The Master Plan is one of the main inputs to the order promising process so that in this case, it is crucial that the Master Plan in its definition, considers and anticipates as accurately as possible the homogeneous quantities of the same product that will be available to serve the customer not only in time and quantity, but also the required homogeneity. In this thesis, it is proposed as main objective to develop methods and models for master planning of operations in SC with LHP dealing with its inherent uncertainty associated. To achieve this, the problem of LHP is characterized and its impact is identified in the planning process operations. This base serves for the development of mathematical programming models for master planning of SC with LHP in deterministic and uncertain contexts. Through these models the size of the production batch is defined considering their division into homogeneous quantities and the uncertainty associated with the objective of serving the customer demand with homogeneous units. A support system to decision-making that facilitates the proposal of different scenarios as an alternative approach to the treatment of uncertainty is also proposed. All models are validated in the ceramic sector. The results show that the gross margin and the level of customer service improves when taking into account in planning models both characteristics due to the LHP and its associated uncertainty.[ES] La Falta de Homogeneidad en el Producto (FHP) aparece en algunos procesos productivos que incorporan materias primas procedentes directamente de la naturaleza y/o procesos productivos con operaciones que provocan cierta heterogeneidad en las características de los productos obtenidos en relación con ciertos atributos. El resultado es la existencia de varias referencias (subtipos) del mismo producto que son diferentes en algunas características relevantes para los clientes y este aspecto se convierte en un problema cuando los clientes requieren unidades homogéneas en sus pedidos. Las Cadenas de Suministro (CdS) en los sectores con esta problemática, como el cerámico, maderero, textil, frutícola, o cárnico, entre otros, se ven obligadas a incluir una o varias fases de clasificación a lo largo del proceso productivo cuya localización y criterios de clasificación, dependen de cada sector específico. La clasificación de un mismo ítem en varios subtipos aumenta el número de referencias a manejar y el volumen de información a procesar, lo que complica la gestión del sistema. Además, después de cada etapa de clasificación, la cantidad obtenida de cada subtipo sólo se conoce con posterioridad a su producción lo que introduce un nuevo tipo de incertidumbre inherente a la FHP: la incertidumbre en las cantidades de cada subtipo de los diferentes lotes de producción planificados. Esta incertidumbre supone un problema cuando los pedidos de los clientes deben comprometerse y servirse a partir de unidades homogéneas. El Plan Maestro constituye una de las principales entradas al proceso de comprometer pedidos por lo que, en este caso, es crucial que el Plan Maestro en su definición considere y anticipe con la mayor exactitud posible las cantidades homogéneas de un mismo producto que estarán disponibles con objeto de servir al cliente no sólo en fecha y cantidad, sino también con la homogeneidad requerida. En esta Tesis, se plantea como objetivo principal desarrollar métodos y modelos para la planificación maestra de operaciones en las CdS con FHP que traten su incertidumbre inherente asociada. Para conseguirlo, se caracteriza la problemática de la FHP y se identifica su impacto en el proceso de planificación de operaciones. Esta base sirve para el desarrollo de modelos de programación matemática para la planificación maestra de cadenas de suministro con FHP en contextos determinista e incierto. A través de estos modelos se define el tamaño de los lotes de producción considerando su división en cantidades homogéneas así como su incertidumbre asociada con el objetivo de servir la demanda de los clientes con unidades homogéneas. También se propone un sistema de ayuda a la toma de decisiones que facilita el planteamiento de distintos escenarios como un enfoque alternativo al tratamiento de la incertidumbre. Todos los modelos se validan en el sector cerámico. Los resultados obtenidos muestran que el margen bruto y el nivel de servicio al cliente mejoran cuando se contemplan en los modelos de planificación tanto las características debidas a la FHP como su incertidumbre asociada.[CA] La Falta d'Homogeneïtat en el Producte (FHP) apareix en alguns processos productius que incorporen matèries primeres procedents directament de la naturalesa i/o processos productius amb operacions que provoquen certa heterogeneïtat en les característiques dels productes obtinguts en relació amb certs atributs. El resultat és l'existència de diverses referències (subtipus) del mateix producte que són diferents en algunes característiques rellevants als clients i este aspecte es convertix en un problema quan els clients requerixen unitats homogènies en els seus comandes. Les Cadenes de Subministrament (CdS) en els sectors amb aquesta problemàtica, com el ceràmic, fuster, tèxtil, fruitícola, o càrnic, entre uns altres, es veuen obligades a incloure una o diverses fases de classificació al llarg del procés productiu la localització del qual així com els criteris de classificació, depenen de cada sector específic. La classificació d'un mateix ítem en diversos subtipus augmenta el nombre de referències i el volum d'informació a processar, la qual cosa complica la gestió del sistema. A més, després de cada etapa de classificació, la quantitat de cada subtipus només es coneix amb posterioritat a la seua producció lo que introduïx un nou tipus d'incertesa inherent a la FHP: la incertesa en les quantitats de cada subtipus dels diferents lots de producció planificats. Esta incertesa suposa un problema quan les comandes dels clients han de comprometre's i servir-se a partir d'unitats homogènies. El Pla Mestre constituïx una de les principals entrades al procés de comprometre comandes pel que, en este cas, és crucial que el Pla Mestre en la seua definició considere i anticipe amb la major exactitud possible les quantitats homogènies d'un mateix producte que estarán disponibles a fi de servir al client no sols en data i quantitat, sinó també amb l'homogeneïtat requerida. En esta Tesi, es planteja com a objectiu principal desenrotllar mètodes i models per a la planificació mestra d'operacions en les CdS amb FHP que tracten la seua incertesa inherent associada. Per a aconseguir-ho, es caracteritza la problemàtica de la FHP i s'identifica el seu impacte en el procés de planificació d'operacions. Esta base servix per al desenrotllament de models de programació matemàtica per a la planificació mestra de CdS amb FHP en contextos determinista i incert. A través d'estos models es definix la grandària dels lots de producció considerant la seua divisió en quantitats homogènies així com la seua incertesa associada amb l'objectiu de servir la demanda dels clients amb unitats homogènies. També es proposa un sistema d'ajuda a la presa de decisions que facilita el plantejament de distints escenaris com un enfocament alternatiu al tractament de la incertesa. Tots els models es validen en el sector ceràmic. Els resultats obtinguts mostren que el marge brut i el nivell de servici al client milloren quan es contemplen en els models de planificació tant les característiques degudes a la FHP com la seua incertesa associada.Mundi Sancho, MI. (2016). Métodos y modelos para la planificación de operaciones en cadenas de suministro caracterizadas por la falta de homogeneidad en el producto. Aplicación al sector cerámico [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/72865TESISCompendi

    The Effect of Modeling Qualities, Tones and Gages in Ceramic Supply Chains' Master Planning

    Get PDF
    [EN] Ceramic production processes are characterized by providing quantities of the same finished goods that differ in qualities, tones and gages. This aspect becomes a problem for ceramic supply chains (SCs) that should promise and serve customer orders with homogeneous quantities of the same finished good. In this paper a mathematical programming model for the centralized master planning of ceramic SC is proposed. Inputs to the master plan include demand forecasts in terms of customer order classes based on their order size and splitting percentages of a lot into homogeneous sub-lots. Then, the master plan defines the size and loading of lots to production lines and their distribution with the aim of maximizing the number of customer orders fulfilled with homogeneous quantities in the most efficient manner for the SC. Finally, the effect of modeling qualities, tones and gages in master planning is assessed. Keywords: Ceramic Supply Chains, Mathematical Programming Model, Qualities, Tones, Gages, Lack of Homogeneity in the ProductThis research has been carried out in the framework of the project funded by the Spanish Ministry of Economy and Competitiveness (Ref. DPI2011-23597) and the Polytechnic University of Valencia (Ref. PAID06-11/1840) entitled “Methods and models for operations planning and order management in supply chains characterized by uncertainty in production due to the lack of product uniformity” (PLANGES-FHP)Mundi, I.; Alemany, MME.; Boza García, A.; Poler Escoto, R. (2012). The Effect of Modeling Qualities, Tones and Gages in Ceramic Supply Chains' Master Planning. Informatica Economica Journal. 16(3):5-18. http://hdl.handle.net/10251/63521S51816

    Review of mathematical models for production planning under uncertainty due to lack of homogeneity: proposal of a conceptual model

    Full text link
    [EN] Lack of homogeneity in the product (LHP) appears in some production processes that confer heterogeneity in the characteristics of the products obtained. Supply chains with this issue have to classify the product in different homogeneous subsets, whose quantity is uncertain during the production planning process. This paper proposes a generic framework for reviewing in a unified way the literature about production planning models dealing with LHP uncertainty. This analysis allows the identification of similarities among sectors to transfer solutions between them and gaps existing in the literature for further research. The results of the review show: (1) sectors affected by LHP inherent uncertainty, (2) the inherent LHP uncertainty types modelled, and (3) the approaches for modelling LHP uncertainty most widely employed. Finally, we suggest a conceptual model reflecting the aspects to be considered when modelling the production planning in sectors with LHP in an uncertain environment.This research was initiated within the framework of the project funded by the Ministerio de Economía y Competitividad [Ref. DPI2011-23597] entitled ‘Methods and models for operations planning and order management in supply chains characterised by uncertainty in production due to the lack of product uniformity’ (PLANGES-FHP) already finished. After, the project leading to this application has received funding from the European Union’s research and innovation programme under the H2020 Marie Skłodowska-Curie Actions with the grant agreement No 691249, Project entitled ’Enhancing and implementing Knowledge based ICT solutions within high Riskand Uncertain Conditions for Agriculture Production Systems’ (RUC-APS).Mundi, I.; Alemany Díaz, MDM.; Poler, R.; Fuertes-Miquel, VS. (2019). Review of mathematical models for production planning under uncertainty due to lack of homogeneity: proposal of a conceptual model. International Journal of Production Research. 57(15-16):5239-5283. https://doi.org/10.1080/00207543.2019.1566665S523952835715-16Ahumada, O., Rene Villalobos, J., & Nicholas Mason, A. (2012). Tactical planning of the production and distribution of fresh agricultural products under uncertainty. Agricultural Systems, 112, 17-26. doi:10.1016/j.agsy.2012.06.002Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 196(1), 1-20. doi:10.1016/j.ejor.2008.02.014Alarcón, F., Alemany, M. M. E., Lario, F. C., & Oltra, R. F. (2011). La falta de homogeneidad del producto (FHP) en las empresas cerámicas y su impacto en la reasignación del inventario. Boletín de la Sociedad Española de Cerámica y Vidrio, 50(1), 49-58. doi:10.3989/cyv.072011Albornoz, V. M., M. González-Araya, M. C. Gripe, and S. V. Rodrıguez. 2014. “A Mixed Integer Linear Program for Operational Planning in a Meat Packing Plant.” Accessed January 15, 2015. http://www.researchgate.net/profile/Victor_Albornoz/publication/268687089_A_Mixed_Integer_Linear_Program_for_Operational_Planning_in_a_Meat_Packing_Plant/links/547382bf0cf29afed60f55c7.pdf.José Alem, D., & Morabito, R. (2012). Production planning in furniture settings via robust optimization. Computers & Operations Research, 39(2), 139-150. doi:10.1016/j.cor.2011.02.022Alemany, M. M. E., Lario, F.-C., Ortiz, A., & Gómez, F. (2013). Available-To-Promise modeling for multi-plant manufacturing characterized by lack of homogeneity in the product: An illustration of a ceramic case. Applied Mathematical Modelling, 37(5), 3380-3398. doi:10.1016/j.apm.2012.07.022Alemany, M., Ortiz, A., & Fuertes-Miquel, V. S. (2018). A decision support tool for the order promising process with product homogeneity requirements in hybrid Make-To-Stock and Make-To-Order environments. Application to a ceramic tile company. Computers & Industrial Engineering, 122, 219-234. doi:10.1016/j.cie.2018.05.040Alfalla-Luque, R., Medina-Lopez, C., & Dey, P. K. (2012). Supply chain integration framework using literature review. Production Planning & Control, 24(8-9), 800-817. doi:10.1080/09537287.2012.666870Al-Othman, W. B. E., Lababidi, H. M. S., Alatiqi, I. M., & Al-Shayji, K. (2008). Supply chain optimization of petroleum organization under uncertainty in market demands and prices. European Journal of Operational Research, 189(3), 822-840. doi:10.1016/j.ejor.2006.06.081Al-Shammari, A., & Ba-Shammakh, M. S. (2011). Uncertainty Analysis for Refinery Production Planning. Industrial & Engineering Chemistry Research, 50(11), 7065-7072. doi:10.1021/ie200313rAmaro, A. C. S., & Barbosa-Póvoa, A. P. F. D. (2009). The effect of uncertainty on the optimal closed-loop supply chain planning under different partnerships structure. Computers & Chemical Engineering, 33(12), 2144-2158. doi:10.1016/j.compchemeng.2009.06.003ARAS, N., BOYACI, T., & VERTER, V. (2004). The effect of categorizing returned products in remanufacturing. IIE Transactions, 36(4), 319-331. doi:10.1080/07408170490279561Aydin, R., Kwong, C. K., Geda, M. W., & Okudan Kremer, G. E. (2017). Determining the optimal quantity and quality levels of used product returns for remanufacturing under multi-period and uncertain quality of returns. The International Journal of Advanced Manufacturing Technology, 94(9-12), 4401-4414. doi:10.1007/s00170-017-1141-0Bakhrankova, K., Midthun, K. T., & Uggen, K. T. (2014). Stochastic optimization of operational production planning for fisheries. Fisheries Research, 157, 147-153. doi:10.1016/j.fishres.2014.03.018Banasik, A., Kanellopoulos, A., Claassen, G. D. H., Bloemhof-Ruwaard, J. M., & van der Vorst, J. G. A. J. (2017). Closing loops in agricultural supply chains using multi-objective optimization: A case study of an industrial mushroom supply chain. International Journal of Production Economics, 183, 409-420. doi:10.1016/j.ijpe.2016.08.012Beaudoin, D., LeBel, L., & Frayret, J.-M. (2007). Tactical supply chain planning in the forest products industry through optimization and scenario-based analysis. Canadian Journal of Forest Research, 37(1), 128-140. doi:10.1139/x06-223Begen, M. A., & Puterman, M. L. (2003). Development Of A Catch Allocation Tool Design For Production Planning At Js Mcmillan Fisheries. INFOR: Information Systems and Operational Research, 41(3), 235-244. doi:10.1080/03155986.2003.11732678Benedito, E., & Corominas, A. (2010). Optimal manufacturing and remanufacturing capacities of systems with reverse logistics and deterministic uniform demand. Journal of Industrial Engineering and Management, 3(1). doi:10.3926/jiem.2010.v3n1.p33-53Bertrand, J. W. ., & Rutten, W. G. M. . (1999). Evaluation of three production planning procedures for the use of recipe flexibility. European Journal of Operational Research, 115(1), 179-194. doi:10.1016/s0377-2217(98)00166-0Björheden, R., & Helstad, K. (2005). Raw Material Procurement in Sawmills’ Business Level Strategy-A Contingency Perspective. International Journal of Forest Engineering, 16(2), 47-56. doi:10.1080/14942119.2005.10702513Bohle, C., Maturana, S., & Vera, J. (2010). A robust optimization approach to wine grape harvesting scheduling. European Journal of Operational Research, 200(1), 245-252. doi:10.1016/j.ejor.2008.12.003Cai, X., Lai, M., Li, X., Li, Y., & Wu, X. (2014). Optimal acquisition and production policy in a hybrid manufacturing/remanufacturing system with core acquisition at different quality levels. European Journal of Operational Research, 233(2), 374-382. doi:10.1016/j.ejor.2013.07.017Carneiro, M. C., Ribas, G. P., & Hamacher, S. (2010). Risk Management in the Oil Supply Chain: A CVaR Approach. Industrial & Engineering Chemistry Research, 49(7), 3286-3294. doi:10.1021/ie901265nChakraborty, M., & Chandra, M. K. (2005). Multicriteria decision making for optimal blending for beneficiation of coal: a fuzzy programming approach. Omega, 33(5), 413-418. doi:10.1016/j.omega.2004.07.005LUO, C., & RONG, G. (2009). A Strategy for the Integration of Production Planning and Scheduling in Refineries under Uncertainty. Chinese Journal of Chemical Engineering, 17(1), 113-127. doi:10.1016/s1004-9541(09)60042-2Davoli, G., Gallo, S., Collins, M., & Melloni, R. (2011). A stochastic simulation approach for production scheduling and investment planning in the tile industry. International Journal of Engineering, Science and Technology, 2(9). doi:10.4314/ijest.v2i9.64006Denizel, M., Ferguson, M., & Souza, G. (2010). Multiperiod Remanufacturing Planning With Uncertain Quality of Inputs. IEEE Transactions on Engineering Management, 57(3), 394-404. doi:10.1109/tem.2009.2024506Dong, M., Lu, S., & Han, S. (2011). Production Planning for Hybrid Remanufacturing and Manufacturing System with Component Recovery. Advances in Electrical Engineering and Electrical Machines, 511-518. doi:10.1007/978-3-642-25905-0_66Dubois, D., Fargier, H., & Fortemps, P. (2003). Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge. European Journal of Operational Research, 147(2), 231-252. doi:10.1016/s0377-2217(02)00558-1DUENYAS, I., & TSAI, C.-Y. (2000). Control of a manufacturing system with random product yield and downward substitutability. IIE Transactions, 32(9), 785-795. doi:10.1080/07408170008967438Esteso, A., Alemany, M. M. E., & Ortiz, A. (2018). Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. International Journal of Production Research, 56(13), 4418-4446. doi:10.1080/00207543.2018.1447706French, M. L., & LaForge, R. L. (2005). Closed-loop supply chains in process industries: An empirical study of producer re-use issues. Journal of Operations Management, 24(3), 271-286. doi:10.1016/j.jom.2004.07.012Gallo, M., R. Grisi, G. Guizzi, and E. Romano. 2009. “A Comparison of Production Policies in Remanufacturing Systems,” Proceedings of the 8th WSEAS International Conference on System Science and Simulation in Engineering, ICOSSSE ‘09, pp. 334.Goodfellow, R., & Dimitrakopoulos, R. (2017). Simultaneous Stochastic Optimization of Mining Complexes and Mineral Value Chains. Mathematical Geosciences, 49(3), 341-360. doi:10.1007/s11004-017-9680-3Graves, S. C. (2010). Uncertainty and Production Planning. Planning Production and Inventories in the Extended Enterprise, 83-101. doi:10.1007/978-1-4419-6485-4_5Grillo, H., Alemany, M. M. E., Ortiz, A., & Fuertes-Miquel, V. S. (2017). Mathematical modelling of the order-promising process for fruit supply chains considering the perishability and subtypes of products. Applied Mathematical Modelling, 49, 255-278. doi:10.1016/j.apm.2017.04.037Guan, Z., & Philpott, A. B. (2011). A multistage stochastic programming model for the New Zealand dairy industry. International Journal of Production Economics, 134(2), 289-299. doi:10.1016/j.ijpe.2009.11.003Guide, V. D. R. (2000). Production planning and control for remanufacturing: industry practice and research needs. Journal of Operations Management, 18(4), 467-483. doi:10.1016/s0272-6963(00)00034-6Gupta, V., & Grossmann, I. E. (2011). Solution strategies for multistage stochastic programming with endogenous uncertainties. Computers & Chemical Engineering, 35(11), 2235-2247. doi:10.1016/j.compchemeng.2010.11.013Gupta, S., and Z. Nan. 2006. “‘Multiperiod Planning of Refinery Operations Under Market Uncertainty,’ AIChE Annual Meeting.” Conference Proceedings.Heckmann, I., Comes, T., & Nickel, S. (2015). A critical review on supply chain risk – Definition, measure and modeling. Omega, 52, 119-132. doi:10.1016/j.omega.2014.10.004Heydari, J., & Ghasemi, M. (2018). A revenue sharing contract for reverse supply chain coordination under stochastic quality of returned products and uncertain remanufacturing capacity. Journal of Cleaner Production, 197, 607-615. doi:10.1016/j.jclepro.2018.06.206Hovelaque, V., Duvaleix-Tréguer, S., & Cordier, J. (2009). Effects of constrained supply and price contracts on agricultural cooperatives. European Journal of Operational Research, 199(3), 769-780. doi:10.1016/j.ejor.2008.08.005Hsieh, S., & Chiang, C.-C. (2001). Manufacturing-to-Sale Planning Model for Fuel Oil Production. The International Journal of Advanced Manufacturing Technology, 18(4), 303-311. doi:10.1007/s001700170070Igarashi, M., de Boer, L., & Fet, A. M. (2013). What is required for greener supplier selection? A literature review and conceptual model development. Journal of Purchasing and Supply Management, 19(4), 247-263. doi:10.1016/j.pursup.2013.06.001Jamshidi, M., & Osanloo, M. (2019). Reliability analysis of production schedule in multi-element deposits under grade-tonnage uncertainty with multi-destinations for the run of mine material. International Journal of Mining Science and Technology, 29(3), 483-489. doi:10.1016/j.ijmst.2018.04.016Jin, X., Hu, S. J., Ni, J., & Xiao, G. (2013). Assembly Strategies for Remanufacturing Systems With Variable Quality Returns. IEEE Transactions on Automation Science and Engineering, 10(1), 76-85. doi:10.1109/tase.2012.2217741Jindal, A., & Sangwan, K. S. (2016). Multi-objective fuzzy mathematical modelling of closed-loop supply chain considering economical and environmental factors. Annals of Operations Research, 257(1-2), 95-120. doi:10.1007/s10479-016-2219-zJohnson, P., G. Evatt, P. Duck, and S. Howell. 2010. “The Derivation and Impact of an Optimal Cut-off Grade Regime Upon Mine Valuations,” Proceedings of the World Congress on Engineering 2010 Vol I.Junior, M. L., & Filho, M. G. (2011). Production planning and control for remanufacturing: literature review and analysis. Production Planning & Control, 23(6), 419-435. doi:10.1080/09537287.2011.561815Kamrad, B., & Ernst, R. (2001). An Economic Model for Evaluating Mining and Manufacturing Ventures with Output Yield Uncertainty. Operations Research, 49(5), 690-699. doi:10.1287/opre.49.5.690.10610Kannegiesser, M., Günther, H.-O., van Beek, P., Grunow, M., & Habla, C. (2008). Value chain management for commodities: a case study from the chemical industry. OR Spectrum, 31(1), 63-93. doi:10.1007/s00291-008-0124-9Karabuk, S. (2008). Production planning under uncertainty in textile manufacturing. Journal of the Operational Research Society, 59(4), 510-520. doi:10.1057/palgrave.jors.2602370Khor, C. S., Elkamel, A., & Douglas, P. L. (2008). Stochastic Refinery Planning with Risk Management. Petroleum Science and Technology, 26(14), 1726-1740. doi:10.1080/10916460701287813Kumral, M. (2004). Genetic algorithms for optimization of a mine system under uncertainty. Production Planning & Control, 15(1), 34-41. doi:10.1080/09537280310001654844Lalmazloumian, M., and K. Y. Wong. 2012. “A Review of Modelling Approaches for Supply Chain Planning Under Uncertainty,” Service Systems and Service Management (ICSSSM), 2012 9th International Conference on, pp. 197.Leiras, A., Ribas, G., Hamacher, S., & Elkamel, A. (2013). Tactical and Operational Planning of Multirefinery Networks under Uncertainty: An Iterative Integration Approach. Industrial & Engineering Chemistry Research, 52(25), 8507-8517. doi:10.1021/ie302835nLiao, H., Deng, Q., & Wang, Y. (2017). Optimal Acquisition and Production Policy for End-of-Life Engineering Machinery Recovering in a Joint Manufacturing/Remanufacturing System under Uncertainties in Procurement and Demand. Sustainability, 9(3), 338. doi:10.3390/su9030338Loomba, A. P. S., & Nakashima, K. (2011). Enhancing value in reverse supply chains by sorting before product recovery. Production Planning & Control, 23(2-3), 205-215. doi:10.1080/09537287.2011.591652Macedo, P. B., Alem, D., Santos, M., Junior, M. L., & Moreno, A. (2015). Hybrid manufacturing and remanufacturing lot-sizing problem with stochastic demand, return, and setup costs. The International Journal of Advanced Manufacturing Technology, 82(5-8), 1241-1257. doi:10.1007/s00170-015-7445-zMartinez, L. 2009. “Why Accounting for Uncertainty and Risk Can Improve Final Decision-Making in Strategic Open Pit Mine Evaluation.” Project Evaluation Conference, Melbourne, pp. 1.Matamoros, M. E. V., & Dimitrakopoulos, R. (2016). Stochastic short-term mine production schedule accounting for fleet allocation, operational considerations and blending restrictions. European Journal of Operational Research, 255(3), 911-921. doi:10.1016/j.ejor.2016.05.050Meredith, J. (1993). Theory Building through Conceptual Methods. International Journal of Operations & Production Management, 13(5), 3-11. doi:10.1108/01443579310028120Miller, W. A., Leung, L. C., Azhar, T. M., & Sargent, S. (1997). Fuzzy production planning model for fresh tomato packing. International Journal of Production Economics, 53(3), 227-238. doi:10.1016/s0925-5273(97)00110-2Mitra, K. (2009). Multiobjective optimization of an industrial grinding operation under uncertainty. Chemical Engineering Science, 64(23), 5043-5056. doi:10.1016/j.ces.2009.08.012Moghaddam, K. S. (2015). Fuzzy multi-objective model for supplier selection and order allocation in reverse logistics systems under supply and demand uncertainty. Expert Systems with Applications, 42(15-16), 6237-6254. doi:10.1016/j.eswa.2015.02.010Mula, J., Peidro, D., Díaz-Madroñero, M., & Vicens, E. (2010). Mathematical programming models for supply chain production and transport planning. European Journal of Operational Research, 204(3), 377-390. doi:10.1016/j.ejor.2009.09.008Mula, J., Peidro, D., & Poler, R. (2010). The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand. International Journal of Production Economics, 128(1), 136-143. doi:10.1016/j.ijpe.2010.06.007MUNDI, I., ALEMANY, M. M. E., BOZA, A., & POLER, R. (2013). A Model-Driven Decision Support System for the Master Planning of Ceramic Supply Chains with Non-uniformity of Finished Goods. Studies in Informatics and Control, 22(2). doi:10.24846/v22i2y201305Mundi, M. I., Alemany, M. M. E., Poler, R., & Fuertes-Miquel, V. S. (2016). Fuzzy sets to model master production effectively in Make to Stock companies with Lack of Homogeneity in the Product. Fuzzy Sets and Systems, 293, 95-112. doi:10.1016/j.fss.2015.06.009Munhoz, J. R., & Morabito, R. (2014). Optimization approaches to support decision making in the production planning of a citrus company: A Brazilian case study. Computers and Electronics in Agriculture, 107, 45-57. doi:10.1016/j.compag.2014.05.016Olivetti, E. A., Gaustad, G. G., Field, F. R., & Kirchain, R. E. (2011). Increasing Secondary and Renewable Material Use: A Chance Constrained Modeling Approach To Manage Feedstock Quality Variation. Environmental Science & Technology, 45(9), 4118-4126. doi:10.1021/es103486sOsmani, A., & Zhang, J. (2013). Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties. Energy, 59, 157-172. doi:10.1016/j.energy.2013.07.043Paksoy, T., Pehlivan, N. Y., & Özceylan, E. (2012). Application of fuzzy optimization to a supply chain network design: A case study of an edible vegetable oils manufacturer. Applied Mathematical Modelling, 36(6), 2762-2776. doi:10.1016/j.apm.2011.09.060Pauls-Worm, K. G. J., Hendrix, E. M. T., Haijema, R., & van der Vorst, J. G. A. J. (2014). An MILP approximation for ordering perishable products with non-stationary demand and service level constraints. International Journal of Production Economics, 157, 133-146. doi:10.1016/j.ijpe.2014.07.020Peidro, D., Mula, J., Alemany, M. M. E., & Lario, F.-C. (2012). Fuzzy multi-objective optimisation for master planning in a ceramic supply chain. International Journal of Production Research, 50(11), 3011-3020. doi:10.1080/00207543.2011.588267Peidro, D., Mula, J., Jiménez, M., & del Mar Botella, M. (2010). A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment. European Journal of Operational Research, 205(1), 65-80. doi:10.1016/j.ejor.2009.11.031Peidro, D., Mula, J., Poler, R., & Lario, F.-C. (2008). Quantitative models for supply chain planning under uncertainty: a review. The International Journal of Advanced Manufacturing Technology, 43(3-4), 400-420. doi:10.1007/s00170-008-1715-yPendharkar, P. C. (1997). A fuzzy linear programming model for production planning in coal mines. Computers & Operations Research, 24(12), 1141-1149. doi:10.1016/s0305-0548(97)00024-5Pendharkar, P. C. (2013). Scatter search based interactive multi-criteria optimization of fuzzy objectives for coal production planning. Engineering Applications of Artificial Intelligence, 26(5-6), 1503-1511. doi:10.1016/j.engappai.2013.01.001Pieter van Donk, D. (2000). Customer‐driven manufacturing in the food processing industry. British Food Journal, 102(10), 739-747. doi:10.1108/00070700010362176Pitty, S. S., Li, W., Adhitya, A., Srinivasan, R., & Karimi, I. A. (2008). Decision support for integrated refinery supply chains. Computers & Chemical Engineering, 32(11), 2767-2786. doi:10.1016/j.compchemeng.2007.11.006Poles, R., and F. Cheong. 2009. “A System Dynamics Model for Reducing Uncertainty in Remanufacturing Systems,” PACIS 2009–13th Pacific Asia Conference on Information Systems: IT Services in a Global Environment.Pongsakdi, A., Rangsunvigit, P., Siemanond, K., & Bagajewicz, M. J. (2006). Financial risk management in the planning of refinery operations. International Journal of Production Economics, 103(1), 64-86. doi:10.1016/j.ijpe.2005.04.007Radulescu, M., G. Zbaganu, and C. Z. Radulescu. 2008. “Crop Planning in the Presence of Production Quotas (Invited Paper),” Computer Modeling and Simulation, 2008.UKSIM 2008. Tenth International Conference on, pp. 549.Rajaram, K., & Karmarkar, U. S. (2002). Product Cycling With Uncertain Yields: Analysis and Application to the Process Industry. Operations Research, 50(4), 680-691. doi:10.1287/opre.50.4.680.2867Ramasesh, R. V., &

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    A Model-Driven Decision Support System for the Master Planning of Ceramic Supply Chains with Non-uniformity of Finished Goods

    Full text link
    [EN] In this paper, a Model-Driven Decision Support System (DSS) for the Master Planning of ceramic Supply Chains characterized by producing units of the same finished good in a specific lot that differ in the aspect (quality), tone (colour) and/or gage (thickness) is proposed. The DSS is based on a mathematical programming model reflecting these non-uniformity characteristics. Through the different DSS functionalities, Decision Makers can generate different scenarios by means of changing any data. Optimal solution of each scenario can be evaluated for robustness under other scenarios. The Decision Maker can compare different solutions and finally choose the most satisfactory one for being implemented. To demonstrate the validity of the DSS, a realistic example is described through the generation of different scenarios based on the degree of finished goods uniformity in lots.This work has been carried out as part of the project “DPI2008-06788-C02-01 (PERMACASI)” funded by Ministerio de Ciencia e Innovación of the Spanish Government and as part of the project “PAID-06-10-2396 (NegoSol-MAS)” funded by Vicerrectorado de Investigación of Universidat Politècnica de València.Mundi Sancho, MI.; Alemany Díaz, MDM.; Boza, A.; Poler, R. (2013). A Model-Driven Decision Support System for the Master Planning of Ceramic Supply Chains with Non-uniformity of Finished Goods. Studies in Informatics and Control. 22(2):153-162. http://hdl.handle.net/10251/99132S15316222

    Monocyte chemotactic protein-3: possible involvement in apical periodontitis chemotaxis

    No full text
    Aim  To study the expression of monocyte chemotactic protein-3 (MCP-3, also known as chemokine CCL-7) in tissue from apical lesions (AL) and to associate MCP-3 expression with symptomatic or asymptomatic apical periodontitis. Methodology  To determine the expression of MCP-3 in AL, biopsies obtained during tooth extraction procedures were fixed, subjected to routine processing and diagnosed as apical granuloma (AG) (n = 7) or radicular cyst (RC) (n = 5). As controls, apical periodontal ligament (PDL) specimens from healthy premolars extracted for orthodontics reasons were included (n = 7). All specimens were immunostained for MCP-3 and examined under a light microscope. In addition, homogenates from AL (n = 14) and healthy PDL samples (n = 7) were studied through immunowestern blot. Finally, periapical exudates samples were collected from root canals of teeth having diagnosis of symptomatic (n = 14) and asymptomatic apical periodontitis (n = 14) during routine endodontic treatments and analysed by immunowestern blot and densitometry. Results  MCP-3 was detected in AG and RC and localized mainly to inflammatory leucocytes, whereas no expression was observed in healthy PDLs. MCP-3 was also detected in periapical exudate, and its levels were significantly higher in symptomatic than in asymptomatic apical periodontitis. Conclusions  MCP-3 was expressed in AL and its levels associated with clinical symptoms. MCP-3 might play a role in disease pathogenesis, possibly by stimulating mononuclear chemotaxis.This study was supported by DI 07/02-2 and FONDECYT 1090461 funding. The authors express their gratitude to Leslie Henrı´quez for her excellent technical assistance, to Consuelo Fresno for her collaboration in sample collection, and to the Endodontic Society of Chile for its continuous support
    corecore