29 research outputs found

    A VirB4 ATPase of the mobile accessory genome orchestrates core genome-encoded features of physiology, metabolism, and virulence of Pseudomonas aeruginosa TBCF10839

    Full text link
    Pseudomonas aeruginosa TBCF10839 is a highly virulent strain that can persist and replicate in human neutrophils. Screening of a signature-tagged mutagenesis (STM) TBCF10839 transposon library in phagocytosis tests identified a mutant that carried the transposon in the VirB4 homolog 5PG21 of an integrative and conjugative element (ICE)-associated type IV secretion system of the pKLC102 subtype. 5P21 TBCF10839 insertion mutants were deficient in metabolic versatility, secretion, quorum sensing, and virulence. The mutants were efficiently killed in phagocytosis tests in vitro and were avirulent in an acute murine airway infection model in vivo. The inactivation of 5PG21 silenced the rhl, las, and pqs operons and the gene expression for the synthesis of hydrogen cyanide, the antimetabolite l-2-amino-4-methoxy-trans-3-butenoic acid, and the H2- and H3-type VI secretion systems and their associated effectors. The mutants were impaired in the utilization of carbon sources and stored compounds that are not funneled into intermediary metabolism. This showcase demonstrates that a single gene of the mobile accessory genome can become an essential element to operate the core genome-encoded features of metabolism and virulence

    Bitter taste signaling in tracheal epithelial brush cells elicits innate immune responses to bacterial infection

    Get PDF
    Constant exposure of the airways to inhaled pathogens requires efficient early immune responses protecting against infections. How bacteria on the epithelial surface are detected and first-line protective mechanisms are initiated are not well understood. We have recently shown that tracheal brush cells (BCs) express functional taste receptors. Here we report that bitter taste signaling in murine BCs induces neurogenic inflammation. We demonstrate that BC signaling stimulates adjacent sensory nerve endings in the trachea to release the neuropeptides CGRP and substance P that mediate plasma extravasation, neutrophil recruitment, and diapedesis. Moreover, we show that bitter tasting quorum-sensing molecules from Pseudomonas aeruginosa activate tracheal BCs. BC signaling depends on the key taste transduction gene Trpm5, triggers secretion of immune mediators, among them the most abundant member of the complement system, and is needed to combat P. aeruginosa infections. Our data provide functional insight into firstline defense mechanisms against bacterial infections of the lung

    Fitness of Isogenic Colony Morphology Variants of Pseudomonas aeruginosa in Murine Airway Infection

    Get PDF
    Chronic lung infections with Pseudomonas aeruginosa are associated with the diversification of the persisting clone into niche specialists and morphotypes, a phenomenon called ‘dissociative behaviour’. To explore the potential of P. aeruginosa to change its morphotype by single step loss-of–function mutagenesis, a signature-tagged mini-Tn5 plasposon library of the cystic fibrosis airway isolate TBCF10839 was screened for colony morphology variants under nine different conditions in vitro. Transposon insertion into 1% of the genome changed colony morphology into eight discernable morphotypes. Half of the 55 targets encode features of primary or secondary metabolism whereby quinolone production was frequently affected. In the other half the transposon had inserted into genes of the functional categories transport, regulation or motility/chemotaxis. To mimic dissociative behaviour of isogenic strains in lungs, pools of 25 colony morphology variants were tested for competitive fitness in an acute murine airway infection model. Six of the 55 mutants either grew better or worse in vivo than in vitro, respectively. Metabolic proficiency of the colony morphology variant was a key determinant for survival in murine airways. The most common morphotype of self-destructive autolysis did unexpectedly not impair fitness. Transposon insertions into homologous genes of strain PAO1 did not reproduce the TBCF10839 mutant morphotypes for 16 of 19 examined loci pointing to an important role of the genetic background on colony morphology. Depending on the chosen P. aeruginosa strain, functional genome scans will explore other areas of the evolutionary landscape. Based on our discordant findings of mutant phenotypes in P. aeruginosa strains PAO1, PA14 and TBCF10839, we conclude that the current focus on few reference strains may miss modes of niche adaptation and dissociative behaviour that are relevant for the microevolution of complex traits in the wild

    Caenorhabditis elegans Semi-Automated Liquid Screen Reveals a Specialized Role for the Chemotaxis Gene cheB2 in Pseudomonas aeruginosa Virulence

    Get PDF
    Pseudomonas aeruginosa is an opportunistic human pathogen that causes infections in a variety of animal and plant hosts. Caenorhabditis elegans is a simple model with which one can identify bacterial virulence genes. Previous studies with C. elegans have shown that depending on the growth medium, P. aeruginosa provokes different pathologies: slow or fast killing, lethal paralysis and red death. In this study, we developed a high-throughput semi-automated liquid-based assay such that an entire genome can readily be scanned for virulence genes in a short time period. We screened a 2,200-member STM mutant library generated in a cystic fibrosis airway P. aeruginosa isolate, TBCF10839. Twelve mutants were isolated each showing at least 70% attenuation in C. elegans killing. The selected mutants had insertions in regulatory genes, such as a histidine kinase sensor of two-component systems and a member of the AraC family, or in genes involved in adherence or chemotaxis. One mutant had an insertion in a cheB gene homologue, encoding a methylesterase involved in chemotaxis (CheB2). The cheB2 mutant was tested in a murine lung infection model and found to have a highly attenuated virulence. The cheB2 gene is part of the chemotactic gene cluster II, which was shown to be required for an optimal mobility in vitro. In P. aeruginosa, the main player in chemotaxis and mobility is the chemotactic gene cluster I, including cheB1. We show that, in contrast to the cheB2 mutant, a cheB1 mutant is not attenuated for virulence in C. elegans whereas in vitro motility and chemotaxis are severely impaired. We conclude that the virulence defect of the cheB2 mutant is not linked with a global motility defect but that instead the cheB2 gene is involved in a specific chemotactic response, which takes place during infection and is required for P. aeruginosa pathogenicity

    Bitter taste signaling in tracheal epithelial brush cells elicits innate immune responses to bacterial infection.

    Full text link
    peer reviewedConstant exposure of the airways to inhaled pathogens requires efficient early immune responses protecting against infections. How bacteria on the epithelial surface are detected and first-line protective mechanisms are initiated are not well understood. We have recently shown that tracheal brush cells (BCs) express functional taste receptors. Here we report that bitter taste signaling in murine BCs induces neurogenic inflammation. We demonstrate that BC signaling stimulates adjacent sensory nerve endings in the trachea to release the neuropeptides CGRP and substance P that mediate plasma extravasation, neutrophil recruitment, and diapedesis. Moreover, we show that bitter tasting quorum-sensing molecules from Pseudomonas aeruginosa activate tracheal BCs. BC signaling depends on the key taste transduction gene Trpm5, triggers secretion of immune mediators, among them the most abundant member of the complement system, and is needed to combat P. aeruginosa infections. Our data provide functional insight into first-line defense mechanisms against bacterial infections of the lung

    The Role of Pseudomonas aeruginosa ExoY in an Acute Mouse Lung Infection Model

    No full text
    The effector protein Exotoxin Y (ExoY) produced by Pseudomonas aeruginosa is injected via the type III secretion system (T3SS) into host cells. ExoY acts as nucleotidyl cyclase promoting the intracellular accumulation of cyclic nucleotides. To what extent nucleotidyl cyclase activity contributes to the pathogenicity of ExoY and which mechanisms participate in the manifestation of lung infection is still unclear. Here, we used an acute airway infection model in mice to address the role of ExoY in lung infection. In infected lungs, a dose-dependent phenotype of infection with bacteria-expressing ExoY was mirrored by haemorrhage, formation of interstitial oedema in alveolar septa, and infiltration of the perivascular space with erythrocytes and neutrophilic granulocytes. Analyses of the infection process on the cellular and organismal level comparing infections with Pseudomonas aeruginosa mutants expressing either nucleotidyl cyclase-active or -inactive ExoY revealed differential cytokine secretion, increased prevalence of apoptosis, and a break of lung barrier integrity in mice infected with cyclase-active ExoY. Notably, of all measured cyclic nucleotides, only the increase of cyclic UMP in infected mouse lungs coincides temporally with the observed early pathologic changes. In summary, our results suggest that the nucleotidyl cyclase activity of ExoY can contribute to P. aeruginosa acute pathogenicity

    Acute intratracheal <it>Pseudomonas aeruginosa </it>infection in cystic fibrosis mice is age-independent

    No full text
    Abstract Background Since the discovery of the human CFTR gene in 1989 various mouse models for cystic fibrosis (CF) have been generated and used as a very suitable and popular tool to approach research on this life-threatening disease. Age related changes regarding the course of disease and susceptibility towards pulmonary infections have been discussed in numerous studies. Methods Here, we investigated CftrTgH(neoim)Hgu and Cftrtm1Unc-Tg(FABPCFTR)1Jaw/J CF mice and their non-CF littermates during an acute lung infection with Pseudomonas aeruginosa for age dependent effects of their lung function and immune response. Mice younger than three or older than six months were intratracheally infected with P. aeruginosa TBCF10839. The infection was monitored by lung function of the animals using non-invasive head-out spirometry and the time course of physiological parameters over 192 hours. Quantitative bacteriology and lung histopathology of a subgroup of animals were used as endpoint parameters. Results Age-dependent changes in lung function and characteristic features for CF like a shallower, faster breathing pattern were observed in both CF mouse models in uninfected state. In contrast infected CF mice did not significantly differ from their non-CF littermates in susceptibility and severity of lung infection in both mouse models and age groups. The transgenic Cftrtm1Unc-Tg(FABPCFTR)1Jaw/J and their non-CF littermates showed a milder course of infection than the CftrTgH(neoim)Hgu CF and their congenic C57Bl/6J non-CF mice suggesting that the genetic background was more important for outcome than Cftr dysfunction. Conclusions Previous investigations of the same mouse lines have shown a higher airway susceptibility of older CF mice to intranasally applied P. aeruginosa. The different outcome of intranasal and intratracheal instillation of bacteria implies that infected CF epithelium is impaired during the initial colonization of upper airways, but not in the subsequent response of host defense.</p

    Umgang mit Spannungen und Krisen in der therapeutischen Beziehung: Erste Erfahrungen mit einem handlungsorientierten Ausbildungs- und Supervisionskonzept

    Full text link
    Aims: Alliance Focused Training (AFT) 1 aims at enhancing therapists' competences in resolving ruptures in the therapeutic alliance using video recordings and role-plays. This pilot study funded by the Heigl Foundation aimed at presenting initial results and clinical experiences with AFT in Germany, and to prepare a subsequent RCT. Methods: 7 trainee therapists participated. Therapies of 15 patients with depressive disorder were analyzed. Results and Conclusion: Trainees experienced AFT as very helpful for their professional development and for dealing with alliance ruptures. The therapeutic competence significantly improved both in self and in observer ratings. The results indicate that AFT is a promising approach to improve psychotherapy training, emphasizing the relevance of the planned proof of concept RCT

    A new role of the complement system: C3 provides protection in a mouse model of lung infection with intracellular Chlamydia psittaci.

    Get PDF
    The complement system modulates the intensity of innate and specific immunity. While it protects against infections by extracellular bacteria its role in infection with obligate intracellular bacteria, such as the avian and human pathogen Chlamydia (C.) psittaci, is still unknown. In the present study, knockout mice lacking C3 and thus all main complement effector functions were intranasally infected with C. psittaci strain DC15. Clinical parameters, lung histology, and cytokine levels were determined. A subset of infections was additionally performed with mice lacking C5 or C5a receptors. Complement activation occurred before symptoms of pneumonia appeared. Mice lacking C3 were ∼100 times more susceptible to the intracellular bacteria compared to wild-type mice, with all C3(-/-) mice succumbing to infection after day 9. At a low infective dose, C3(-/-) mice became severely ill after an even longer delay, the kinetics suggesting a so far unknown link of complement to the adaptive, protective immune response against chlamydiae. The lethal phenotype of C3(-/-) mice is not based on differences in the anti-chlamydial IgG response (which is slightly delayed) as demonstrated by serum transfer experiments. In addition, during the first week of infection, the absence of C3 was associated with partial protection characterized by reduced weight loss, better clinical score and lower bacterial burden, which might be explained by a different mechanism. Lack of complement functions downstream of C5 had little effect. This study demonstrates for the first time a strong and complex influence of complement effector functions, downstream of C3 and upstream of C5, on the outcome of an infection with intracellular bacteria, such as C. psittaci
    corecore