33 research outputs found

    Weight loss achieved using an energy restriction diet with normal or higher dietary protein decreased the number of CD14++CD16+ proinflammatory monocytes and plasma lipids and lipoproteins in middle-aged, overweight, and obese adults

    Get PDF
    Monocytes are involved in immune responses, and specific monocyte subpopulations (MS) that express intermediate to high levels of CD16 are associated with obesity and cardiovascular events. Consuming high protein (HP) when dieting improves body composition and cardiometabolic health outcomes, but whether HP affects MS during weight loss remains unknown. We assessed the effect of HP on energy restriction (ER)–induced changes in MS in overweight and obese adults. The relations between MS and plasma lipids and lipoproteins were also examined. We hypothesized that, independent of protein intake, ER-induced weight loss would decrease the numbers of MS and that MS and plasma lipids and lipoproteins would be related. Thirty-two adults (age 52 ± 1 years, body mass index 31.3 ± 0.5 kg/m2, means ± S.E.) consumed either a normal protein (n=18) or HP (n=14) (0.8 vs 1.5 g•kg−1•d−1 protein) ER diet (750-kcal/d [3138-kJ/d] deficit) for 16 weeks. The HP diet included 0.7 g•kg−1•d−1 of milk protein isolate. Fasting plasma lipids, lipoproteins, and the numbers of MS were analyzed. Over time, independent of protein intake, CD14++CD16+ cell number decreased, whereas CD14dimCD16++, CD14+CD16+, and CD14+CD16− cell numbers remained unchanged. CD14dimCD16++ cell number was negatively associated with total cholesterol (TC) and triglyceride, while CD14++CD16+ cell number was positively associated with TC, low-density lipoprotein cholesterol (LDL), TC to high-density lipoprotein cholesterol (HDL) ratio, and LDL to HDL ratio. Weight loss achieved while consuming an ER diet with either normal or high protein may improve immunity by partially decreasing proinflammatory monocytes. Associations between MS and plasma lipids and lipoproteins are confirmed in overweight and obese adults

    Endogenous Transmembrane TNF-Alpha Protects Against Premature Senescence in Endothelial Colony Forming Cells

    Get PDF
    RATIONALE: Transmembrane tumor necrosis factor-α (tmTNF-α) is the prime ligand for TNF receptor 2, which has been shown to mediate angiogenic and blood vessel repair activities in mice. We have previously reported that the angiogenic potential of highly proliferative endothelial colony-forming cells (ECFCs) can be explained by the absence of senescent cells, which in mature endothelial cells occupy >30% of the population, and that exposure to a chronic inflammatory environment induced premature, telomere-independent senescence in ECFCs. OBJECTIVE: The goal of this study was to determine the role of tmTNF-α in the proliferation of ECFCs. METHODS AND RESULTS: Here, we show that tmTNF-α expression on ECFCs selects for higher proliferative potential and when removed from the cell surface promotes ECFC senescence. Moreover, the induction of premature senescence by chronic inflammatory conditions is blocked by inhibition of tmTNF-α cleavage. Indeed, the mechanism of chronic inflammation-induced premature senescence involves an abrogation of tmTNF/TNF receptor 2 signaling. This process is mediated by activation of the tmTNF cleavage metalloprotease TNF-α-converting enzyme via p38 MAP kinase activation and its concurrent export to the cell surface by means of increased iRhom2 expression. CONCLUSIONS: Thus, we conclude that tmTNF-α on the surface of highly proliferative ECFCs plays an important role in the regulation of their proliferative capacity

    A Pilot Study of Circulating Endothelial and Hematopoietic Progenitor Cells in Children With Sarcomas

    Get PDF
    Utilizing a multiparametric flow cytometry protocol, we assessed various cell types implicated in tumor angiogenesis that were found circulating in the peripheral blood of children with sarcomas (cases) based on their cell surface antigen expression. Circulating endothelial cells (CECs), endothelial colony-forming cells (ECFCs), and the ratio of 2 distinct populations of circulating hematopoietic stem and progenitor cells (CHSPCs), the proangiogenic CHSPCs (pCHSPCs) and nonangiogenic CHSPCs (nCHSPCs) were enumerated. Multiparametric flow cytometry was analyzed in cases at baseline and at 4 additional timepoints until the end of treatment and levels compared with each other and with healthy controls. At all timepoints, cases had significantly lower levels of CECs, but elevated ECFCs and a pCHSPC:nCHSPC ratio compared with controls (all P-values <0.05). There was no significant difference in any of the cell types analyzed based on tumor histology, stage (localized vs. metastatic), or tumor size. After treatment, only the CECs among the complete responders were significantly lower at end of therapy (P<0.01) compared with nonresponders, whereas the ECFCs among all cases significantly increased (P<0.05) compared with baseline. No decline in the pCHSPC:nCHSPC ratio was observed despite tumor response. On the basis of these results, a validation of CECs as prognostic biomarker is now warranted

    Neurofibromin is a novel regulator of Ras-induced reactive oxygen species production in mice and humans

    Get PDF
    Neurofibromatosis type 1 (NF1) predisposes individuals to early and debilitating cardiovascular disease. Loss of function mutations in the NF1 tumor suppressor gene, which encodes the protein neurofibromin, leads to accelerated p21(Ras) activity and phosphorylation of multiple downstream kinases, including Erk and Akt. Nf1 heterozygous (Nf1(+/-)) mice develop a robust neointima that mimics human disease. Monocytes/macrophages play a central role in NF1 arterial stenosis as Nf1 mutations in myeloid cells alone are sufficient to reproduce the enhanced neointima observed in Nf1(+/-) mice. Though the molecular mechanisms underlying NF1 arterial stenosis remain elusive, macrophages are important producers of reactive oxygen species (ROS) and Ras activity directly regulates ROS production. Here, we use compound mutant and lineage-restricted mice to demonstrate that Nf1(+/-) macrophages produce excessive ROS, which enhance Nf1(+/-) smooth muscle cell proliferation in vitro and in vivo. Further, use of a specific NADPH oxidase-2 inhibitor to limit ROS production prevents neointima formation in Nf1(+/-) mice. Finally, mononuclear cells from asymptomatic NF1 patients have increased oxidative DNA damage, an indicator of chronic exposure to oxidative stress. These data provide genetic and pharmacologic evidence that excessive exposure to oxidant species underlie NF1 arterial stenosis and provide a platform for designing novels therapies and interventions

    Cdkn2a (Arf) loss drives NF1-associated atypical neurofibroma and malignant transformation

    Get PDF
    Plexiform neurofibroma (PN) tumors are a hallmark manifestation of neurofibromatosis type 1 (NF1) that arise in the Schwann cell (SC) lineage. NF1 is a common heritable cancer predisposition syndrome caused by germline mutations in the NF1 tumor suppressor, which encodes a GTPase-activating protein called neurofibromin that negatively regulates Ras proteins. Whereas most PN are clinically indolent, a subset progress to atypical neurofibromatous neoplasms of uncertain biologic potential (ANNUBP) and/or to malignant peripheral nerve sheath tumors (MPNSTs). In small clinical series, loss of 9p21.3, which includes the CDKN2A locus, has been associated with the genesis of ANNUBP. Here we show that the Cdkn2a alternate reading frame (Arf) serves as a gatekeeper tumor suppressor in mice that prevents PN progression by inducing senescence-mediated growth arrest in aberrantly proliferating Nf1−/− SC. Conditional ablation of Nf1 and Arf in the neural crest-derived SC lineage allows escape from senescence, resulting in tumors that accurately phenocopy human ANNUBP and progress to MPNST with high penetrance. This animal model will serve as a platform to study the clonal development of ANNUBP and MPNST and to identify new therapies to treat existing tumors and to prevent disease progression

    Neurofibromin Deficient Myeloid Cells are Critical Mediators of Aneurysm Formation In Vivo

    Get PDF
    Background Neurofibromatosis Type 1 (NF1) is a genetic disorder resulting from mutations in the NF1 tumor suppressor gene. Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity in circulating hematopoietic and vascular wall cells, which are critical for maintaining vessel wall homeostasis. NF1 patients have evidence of chronic inflammation resulting in development of premature cardiovascular disease, including arterial aneurysms, which may manifest as sudden death. However, the molecular pathogenesis of NF1 aneurysm formation is unknown. Method and Results Utilizing an angiotensin II-induced aneurysm model, we demonstrate that heterozygous inactivation of Nf1 (Nf1+/−) enhanced aneurysm formation with myeloid cell infiltration and increased oxidative stress in the vessel wall. Using lineage-restricted transgenic mice, we show loss of a single Nf1 allele in myeloid cells is sufficient to recapitulate the Nf1+/− aneurysm phenotype in vivo. Finally, oral administration of simvastatin or the antioxidant apocynin, reduced aneurysm formation in Nf1+/− mice. Conclusion These data provide genetic and pharmacologic evidence that Nf1+/− myeloid cells are the cellular triggers for aneurysm formation in a novel model of NF1 vasculopathy and provide a potential therapeutic target

    Genetic disruption of the small GTPase RAC1 prevents plexiform neurofibroma formation in mice with neurofibromatosis type 1

    Get PDF
    Neurofibromatosis type 1 (NF1) is a common cancer predisposition syndrome caused by mutations in the NF1 tumor suppressor gene. NF1 encodes neurofibromin, a GTPase-activating protein for RAS proto-oncogene GTPase (RAS). Plexiform neurofibromas are a hallmark of NF1 and result from loss of heterozygosity of NF1 in Schwann cells, leading to constitutively activated p21RAS. Given the inability to target p21RAS directly, here we performed an shRNA library screen of all human kinases and Rho-GTPases in a patient-derived NF1-/- Schwann cell line to identify novel therapeutic targets to disrupt PN formation and progression. Rho family members, including Rac family small GTPase 1 (RAC1), were identified as candidates. Corroborating these findings, we observed that shRNA-mediated knockdown of RAC1 reduces cell proliferation and phosphorylation of extracellular signal-regulated kinase (ERK) in NF1-/- Schwann cells. Genetically engineered Nf1flox/flox;PostnCre+ mice, which develop multiple PNs, also exhibited increased RAC1-GTP and phospho-ERK levels compared with Nf1flox/flox;PostnCre- littermates. Notably, mice in which both Nf1 and Rac1 loci were disrupted (Nf1flox/floxRac1flox/flox;PostnCre+) were completely free of tumors and had normal phospho-ERK activity compared with Nf1flox/flox ;PostnCre+ mice. We conclude that the RAC1-GTPase is a key downstream node of RAS and that genetic disruption of the Rac1 allele completely prevents PN tumor formation in vivo in mice

    Cabozantinib for neurofibromatosis type 1-related plexiform neurofibromas: a phase 2 trial

    Get PDF
    Neurofibromatosis type 1 (NF1) plexiform neurofibromas (PNs) are progressive, multicellular neoplasms that cause morbidity and may transform to sarcoma. Treatment of Nf1fl/fl;Postn-Cre mice with cabozantinib, an inhibitor of multiple tyrosine kinases, caused a reduction in PN size and number and differential modulation of kinases in cell lineages that drive PN growth. Based on these findings, the Neurofibromatosis Clinical Trials Consortium conducted a phase II, open-label, nonrandomized Simon two-stage study to assess the safety, efficacy and biologic activity of cabozantinib in patients ≥16 years of age with NF1 and progressive or symptomatic, inoperable PN ( NCT02101736 ). The trial met its primary outcome, defined as ≥25% of patients achieving a partial response (PR, defined as ≥20% reduction in target lesion volume as assessed by magnetic resonance imaging (MRI)) after 12 cycles of therapy. Secondary outcomes included adverse events (AEs), patient-reported outcomes (PROs) assessing pain and quality of life (QOL), pharmacokinetics (PK) and the levels of circulating endothelial cells and cytokines. Eight of 19 evaluable (42%) trial participants achieved a PR. The median change in tumor volume was 15.2% (range, +2.2% to -36.9%), and no patients had disease progression while on treatment. Nine patients required dose reduction or discontinuation of therapy due to AEs; common AEs included gastrointestinal toxicity, hypothyroidism, fatigue and palmar plantar erythrodysesthesia. A total of 11 grade 3 AEs occurred in eight patients. Patients with PR had a significant reduction in tumor pain intensity and pain interference in daily life but no change in global QOL scores. These data indicate that cabozantinib is active in NF1-associated PN, resulting in tumor volume reduction and pain improvement

    A Synthetic Lethal shRNA Screen and Genetic Proof of Concept Identifies RAC1 as a Novel Target to Disrupt Plexiform Neurofibroma Formation

    No full text
    Indiana University-Purdue University Indianapolis (IUPUI)Neurofibromatosis Type 1 (NF1) is a highly penetrant autosomal dominant genetic disorder where mutations in the tumor suppressor gene NF1 leads to decreased neurofibromin. The most debilitating manifestation is the presence of complex multilineage Schwann cell-derived plexiform neurofibromas (PN). Historically, little clinical success has been achieved targeting PN through surgery or chemotherapies. I performed an shRNA library screen of patient-derived Schwann cell lines to identify novel therapeutic targets to disrupt PN formation and progression. An shRNA library screen of human kinases and Rho-GTPases was performed in NF1-/- and paired NF1 competent immortalized Schwann cell lines. Following sequencing, candidates were identified. We previously developed a novel mouse model of NF1 wherein a neural crest specific Postncre targeted loxp-flanked Nf1 that replicated the PN found in patients. Additional cohorts of mice were generated with biallelic deletion of Rac1 (Nf1f/fRac1f/f Postn-Cre+; DKO ). Mice were aged for 9 months and peripheral nerves were harvested and fixed in formalin. Peripheral nerve size was measured and tumors were identified through blinded analysis of hematoxylin and eosin and Masson’s Trichrome (collagen) stained slides. Rho family members, including RAC1, were identified as candidates through an shRNA library screen. Genetic disruption of Rac1 in the Schwann cell lineage resulted in the prevention of tumor formation in DKO mice, as observed by peripheral nerve size and histological analysis. I observed an average of 14.8 +/- 2.65 tumors per mouse in the Nf1f/f Postnviii Cre+ cohort compared to 0 tumors in the DKO (p<0.0001). Following an shRNA library screen, RAC1 was identified as a candidate to modulate PN formation. Biallelic deletion of Rac1 in vivo prevented PN formation. I demonstrate that a candidate identified in an shRNA library screen can translate to an biological effect in a mouse model of PN

    Brief report: Endothelial colony-forming cells and inflammatory monocytes in HIV

    No full text
    The relationships between HIV infection, monocyte activation, and endothelial colony-forming cells (ECFCs) are unknown. We compared ECFC, intermediate monocytes (CD14 CD16), and nonclassical monocytes (CD14 CD16) levels in HIV-infected participants virologically suppressed on antiretroviral therapy, HIV-infected treatment-naive participants, and HIV-uninfected healthy controls. ECFC levels were significantly higher in the HIV-infected virologically suppressed group compared with the uninfected controls. CD14 CD16 percentages (but not CD14 CD16 cells) were significantly higher in both HIV-infected groups vs. uninfected controls. In the HIV-infected groups, ECFCs and CD14 CD16 intermediate monocytes were significantly and inversely correlated. Lower availability of ECFCs may partly explain the relationship between greater intermediate monocytes and atherosclerosis in HIV
    corecore