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Abstract

Rationale—Transmembrane TNF-α (tmTNF-α) is the prime ligand for TNFR2, which has been 

shown to mediate angiogenic and blood vessel repair activities in mice. We have previously 

reported that the angiogenic potential of highly proliferative endothelial colony forming cells 

(ECFCs) can be explained by the absence of senescent cells, which in mature endothelial cells 

occupy more than 30% of the population, and that exposure to a chronic inflammatory 

environment induced premature, telomere-independent senescence in ECFCs.

Objective—The goal of this study was to determine the role of transmembrane TNF-α in the 

proliferation of ECFCs.

Methods and Results—Here we show that tmTNF-α expression on ECFCs selects for higher 

proliferative potential and when removed from the cell surface promotes ECFC senescence. 

Moreover, the induction of premature senescence by chronic inflammatory conditions is blocked 

by inhibition of tmTNF-α cleavage. Indeed, the mechanism of chronic inflammation-induced 

premature senescence involves an abrogation of tmTNF/TNFR2 signaling. This process is 

mediated by activation of the tmTNF cleavage metalloprotease TACE via p38 MAP kinase 

activation and its concurrent export to the cell surface by means of increased iRhom2 expression.

Conclusion—Thus we conclude that tmTNF-α on the surface of highly proliferative ECFCs 

plays an important role in the regulation of their proliferative capacity.
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INTRODUCTION

Despite improvements in treatment and prevention, cardiovascular disease remains one of 

the leading causes of death, disability, and health care expenditure in the US. Vascular 

changes such as the decline in passive compliance of arterial blood vessels and impaired 

endothelium-dependent vasodilation response are reliable markers for aging1. Mathematical 

modeling based on known rates of endothelial turnover and proliferation rates have 

calculated that a reservoir of highly proliferative endothelial progenitor cells is required to 

maintain vascular function2. Therefore endothelial progenitor cells (EPCs) including non-

myeloid highly proliferative endothelial progenitor cells, also described as endothelial 

colony forming cells (ECFCs) or outgrowth endothelial cells, and bone marrow derived 

circulating progenitor cells (CPCs) are believed to play an important role in maintenance of 

a viable endothelial layer in the vascular system3-6. ECFCs define a novel hierarchy of 

endothelial cells and are nearly identical to mature ECs, with the exception of greatly 

enhanced proliferative potential3, 7. Deregulation of ECFCs and CPCs have been shown to 

correlate with vascular diseases and diabetes8-11. Therefore, further investigation into their 

biology is important to both general vascular biology and investigations into potential cell 

therapies.

TNF-α is predominately associated with an inflammatory response, vascular dysfunction, 

and eventually endothelial apoptosis. However, most of the studies on TNF-α have been 

performed with soluble TNF-α, which is cleaved from precursor transmembrane TNF-α by 

the matrix metalloproteinase TACE12. Soluble TNF-α binds to both TNFR1 and TNFR2, 

although in endothelial cells it predominantly signals through TNFR113. In contrast to 

soluble TNF-α, tmTNF-α binds preferentially to TNFR2 in endothelial cells14. TNFR1 and 

TNFR2 are quite different in their biology. TNFR1 contains a death signaling domain while 

TNFR2 does not; this leads to profound differences in terms of cell proliferation and survival 

in endothelial cells16. In fact, studies comparing TNFR1 and TNFR2 receptor knockout 

mice demonstrated that TNFR1 is anti-angiogenic, while the tmTNF-α-selective TNFR2 

confers a survival signal, mediating angiogenic and blood vessel repair activities17. In 

addition, transgenic mice that only express tmTNF develop fewer inflammatory 

atherosclerotic plaques, and transgenic uncleavable transmembrane TNF-α expression in 

endothelial cells elicits angiogenesis in vivo18, 19.

The proliferative potential of ECs is limited by the processes of senescence20, 21. Endothelial 

injury in the absence of sufficient circulating progenitor cells may affect the progression of 

cardiovascular disease, as increases in senescent vascular wall cells may lead to the inability 

of the endothelium to maintain a continuous functional monolayer2, 22. We have previously 

shown that ECFCs have extremely low levels of senescence but undergo stress induced 

cellular senescence when exposed to chronic inflammatory conditions, a process which is 

independent of telomeric shortening-dependent replicative senescence23.
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We show here that ECFCs unexpectedly express high levels of surface tmTNF-α. Moreover, 

sorting freshly isolated cord blood using tmTNF-specific magnetic beads results in an 

increase in the number of ECFC colonies recovered, and these colonies contain a greater 

distribution of highly proliferative cells than unsorted ECFC colonies. We also show that 

when tmTNF/TNFR2 signaling is perturbed, ECFCs undergo premature senescence, 

resulting in loss of the highly proliferative phenotype. Furthermore, inflammation-induced 

premature senescence is blocked by inhibition of tmTNF-α cleavage. Our data show for the 

first time that transmembrane TNF-α plays an important role in ECFC proliferative capacity.

METHODS

Reagents and cells

Antibodies directed against transmembrane TNF-α, TACE ectodomain, TNFR1, and TNFR2 

were purchased from R&D Biotechnologies, and secondary AlexaFluor antibodies were 

from Invitrogen. p16, p65, and p-Etk antibodies were purchased from Abcam. TACE activity 

detection kit was from Anaspec and β-gal senescence detection kit was obtained from 

BioVision (Mountain View, CA). All other reagents were purchased from Sigma.

ECFC were isolated from fresh cord blood as previously described23. Briefly, mononuclear 

cells (MNC) were isolated using standard Ficoll purification, then grown on collagen-coated 

tissue culture plates in Endothelial Growth Media-2 (EGM2) supplemented with an 

additional 10% fetal bovine serum. Medium was changed every 2 days until colonies 

appeared after 3 weeks. Further purification of MNC was done using magnetic beads 

(Miltenyi Biotech) prior to plating on collagen. Human microvascular endothelial cells 

(HMVECs) were used as controls and were obtained from Lonza and maintained in EGM2 

MV media.

Isolation of endothelium from arteries

Tibial arteries (diseased) and internal mammary arteries (healthy) were obtained as medical 

waste from amputations due to critical limb ischemia or cardiac bypass surgeries, 

respectively. Samples were obtained from males aged 55-68 and matched for comorbidities. 

There was no significant difference in demographic variables or risk factors associated with 

critical limb ischemia or heart disease, including smoking, diabetes, hyperlipidemia, and 

hypertension. Vessels were cut longitudinally, rinsed with saline, and the endothelium was 

removed by passing gently over the surface with a cell scraper. Recovered cells were washed 

and then stained for CD31 and tmTNF for flow cytometry analysis.

Immunofluorescence staining and flow cytometry

For detection of tmTNF in vessel walls, healthy internal mammary arteries (healthy) or tibial 

arteries from patients with peripheral vascular disease (diseased) were obtained. Cells were 

gently removed from the vessel using a collagenase solution and then stained for tmTNF and 

CD31.

Cells were fixed with 1% paraformaldehyde (PFA) and blocked with 1% bovine serum 

albumin in phosphate buffered saline (PBS), then stained with tmTNF-α, TACE, TNFR2, or 
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CD31 and appropriate secondary antibodies. Fluorescence was detected using a 

FACSCalibur II (Beckton Dickenson) and analyzed using CellQuest software. Percent 

positive signal was gated based on isotype controls.

For detection of tmTNF+ cells in the CD34+/CD45− fraction, MNCs were stained using a 7 

color assay with positive gating based on fluorescent minus one controls as described 24. 

Data was collected on a BD LSRII and analyzed using Flowjo software.

Staining for senescence-associated β-galactosidase

To assess senescence in cord blood-derived ECFC, SA-β-gal activity was measured using a 

standard senescence detection kit (Biovision, Mountain View, CA) according to the 

manufacturer's instructions. Briefly, culture media was removed and cells were washed once 

with PBS then fixed with the fixation solution for 15 min at room temperature. After two 

additional washes with PBS, the staining solution containing 1 mg/ml 5-bromo-4-chloro-3-

indolyl-d galactoside was added to each well. Cells were incubated at 37°C overnight and 

then observed under a microscope for development of blue color. The percentage of blue 

cells vs. total cells was measured by choosing 25 random microscopic fields.

Western blot analysis

For iRhom2 detection, ECFC were treated for up to 6 days with 10 ng/ml soluble TNF-α. 

Cells were lysed in cell lysis buffer (Cell Signaling) containing protease inhibitor cocktail 

(ThermoScientific, #88663) with protein concentrations determined by BCA assay. Proteins 

(20 μg) were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE), followed by immunoblotting using appropriate antibodies. The chemiluminescent 

signals were quantified by densitometry using Adobe Photoshop.

NFκB and TNFR2 silencing with small interfering RNA

For NFκB gene knockdown by RNAi we used Ambion's Silencer® Select Custom Designed 

siRNA against NFκB using a protocol as previously described25. TNFR2 siRNA was 

purchased from Life Technologies. Briefly, cells were transfected with GeneJammer 

transfection reagent (Aligent Technologies) and after incubation for 2 days at 37°C, total cell 

lysate was used to determine the knockdown of NFκB or TNFR2 by Western blotting. Cells 

were then used in proliferation assays.

Proliferation assays

To determine proliferation potential of ECFC, single cells were plated on collagen-coated 96 

well plates, 1 cell per well. After 14 days incubation colony size was determined.

Population doubling time (pdt) was determined by seeding cells in 12-well plates. The 

number of PDs occurring between passages was calculated according to the equation PD = 

log2(CH/CS), where CH is the number of viable cells at harvest and CS is the number of 

cells seeded. The PDT was derived using the time interval between cell seeding and harvest 

divided by the number of PDs for that passage.
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For carboxyfluorescein diacetate succinimidyl ester (CFSE) determination of proliferation, 

cells were labeled with 5 μM CFSE for 15 minutes at 37°C then washed twice with PBS and 

incubated for 3 days with the appropriate treatments and the percentage of proliferating cells 

was determined by dilution of CFSE signal as measured by flow cytometry.

Sprouting assay

ECFC sprouting ability was assessed as previously described18. Briefly, cells were seeded 

onto collagen-coated Cytodex beads and embedded into fibrinogen gel overlaid with growth 

media. After 5 days the number of sprouts longer than the diameter of the bead were 

determined.

TACE activation

TACE activity in whole cell lysates was determined with Sensolyte 520 TACE Activity 

Assay Kit (Anaspec, Fremont, CA) at 490 nm/520 nm according to the manufacturer's 

instructions.

Statistical analysis

Each experiment was performed in triplicate, with a minimum of three independent 

experiments. The differences between groups were compared using paired Student T-test or 

ANOVA with Bonferroni corrections. Where applicable, mean ± SEM of multiple 

measurements is reported as indicated.

RESULTS

tmTNF correlates with ECFC proliferation

To assess the association of tmTNF with endothelial cell proliferative capacity, we first 

compared the surface expression levels of tmTNF-α in highly proliferative ECFCs with 

mature ECs. As shown in Figure 1, ECFCs isolated from cord blood express significant 

levels of tmTNF-α, whereas human microvascular endothelial cells (HMVECs) or human 

coronary arterial endothelial cells (HCAECs) exhibit low amounts (Figure 1A-B). We 

further confirmed this expression by Western blot (Fig. 1C). To confirm that tmTNF-α 

expression was not an artifact of tissue culture we isolated mononuclear cells (MNCs) from 

cord blood and stained for CD34, CD45, and tmTNF-α (Fig. 1D). The majority of tmTNF 

staining (blue dots) was located in the CD34+/CD45− population, which is enriched for 

ECFCs and circulating angiogenic ECs24. In fact, over 25% of this population was positive 

for tmTNF-α. Next we obtained sections of arteries from patients with peripheral vascular 

disease or internal mammary arteries (IMA) as age-matched “healthy” controls. IMA is a 

particularly good control in our case as we were able to control for age and other 

demographic variables, yet IMA is seemingly exempt from development of atherosclerosis. 

We detached the endothelial cells, stained for tmTNF-α with CD31 as an endothelial marker, 

and determined CD31+tmTNF+ cells by FACS (Fig. 1E). As shown in Figure 1F, CD31/

tmTNF-α co-staining in healthy arteries (IMA) showed a small percentage (~6-8%) of 

endothelial cells expressing tmTNF-α. Interestingly, in diseased arteries (tibial artery from 

patients with critical limb ischemia) the number of CD31/tmTNF-α double positive cells is 

lower than in healthy arteries, which correlates with current literature suggesting that ECFCs 
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are decreased in diseased vessels. Together, this data suggests that a small sub-population of 

endothelial cells expresses tmTNF-α, and that this sub-population correlates with ECFCs.

Prior studies suggest that tmTNF-α is associated with increased angiogenesis.18, 19, 26 

Because of the known role of ECFCs in angiogenesis we examined the role of tmTNF-α in 

ECFC proliferation. We separated MNCs from cord blood into tmTNF positive and negative 

fractions by magnetic bead separation. We determined colony formation, and there were 

significantly more highly proliferative colonies formed from the tmTNF+ fraction (Fig. 2A) 

along with a greater number of cells per colony than in the tmTNF− fraction. Conversely, 

when we added TACE, a metalloprotease that cleaves tmTNF, to the culture media there 

were significantly fewer colonies recovered (Fig. 2B). Re-seeding single cells from similarly 

sized colonies showed a marked shift towards greater proliferative potential in cells from 

tmTNF+ colonies compared to those from tmTNF− colonies (Fig. 2C). Moreover, when we 

sorted ECFC colonies according to tmTNF intensity (Fig. 2D) and seeded each fraction in 

single cell assays to determine proliferative potential the stronger tmTNF expressing cells 

exhibited greater proliferative capacity (Fig. 2E). Thus, our data shows a strong association 

between tmTNF expression and ECFC proliferative potential.

To assess the role of tmTNF signaling in ECFC proliferation we first confirmed that both 

tmTNF and its preferred receptor, TNFR2, are expressed on ECFCs (Fig. 3A). Next, we 

determined ECFC proliferative capacity using CFSE, a cell permeable dye which covalently 

couples to intracellular molecules and is diluted with each cell division, thus allowing 

quantitative assessment of cell proliferation27 (Fig. 3B), and by determining population 

doubling times (Fig. 3C) in the presence of TACE or an anti-TNFR2 neutralizing antibody. 

Because NFκB is known to be a downstream mediator of TNFR2 but not TNFR1, we also 

included an NFκB inhibitor. In all cases interference with the tmTNF-TNFR2 signaling axis 

or perturbation of TNFR2 downstream signaling resulted in decreased proliferation, as well 

as significantly reduced phosphorylation of Etk, a TNFR2-specific kinase (Fig. 3F). To 

confirm the specificity of this inhibition, we transfected ECFCs with siRNA directed against 

TNFR2 (Fig. 3D) or the p65 subunit of NFκB (Fig. 3E), both of which resulted in strongly 

reduced proliferation (Fig. 3G-H).

Next, we determined the effect of perturbing tmTNF signaling on the angiogenic capacity of 

ECFCs. We coated Cytodex beads with ECFCs, embedded them in fibrin gel, and incubated 

for 5 days with the addition of TACE (Fig. 4A) or an anti-TNFR2 neutralizing antibody (Fig. 

4B). Treatment with either TACE or anti-TNFR2 antibodies resulted in significantly fewer 

sprouts per bead than ECFCs with intact tmTNF-TNFR2 signaling (Fig. 4A, B, 

representative figure 4C). As further confirmation, we determined sprouting using ECFCs 

transfected with either TNFR2 siRNA or scr control siRNA and found that knock down of 

TNFR2 resulted in a similar decrease in angiogenic capacity (Fig. 4D).

Loss of tmTNF results in premature senescence

Our previous work has shown that ECFCs undergo premature senescence, resulting in a loss 

of proliferative potential, when exposed to chronic inflammatory conditions 23. Because of 

the observed relationship between tmTNF and ECFC proliferative capacity, we next 

determined the relationship between tmTNF and premature senescence, which is a major 
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cause of decreased proliferation in endothelial cells. We incubated ECFCs with either 

recombinant TACE (Fig. 5A) or an anti-TNFR2 neutralizing antibody (Fig. 5B) for 6 days 

and determined development of premature senescence by staining for senescence-associated 

β-galactosidase (SA-β-gal, Fig. 5C representative). Both cleaving tmTNF and blocking 

TNFR2 signaling resulted in increased senescence of ECFCs. To confirm this involvement 

of tmTNF-TNFR2 signaling in the development of senescence, we treated ECFCs with 

either TACE or anti-TNFR2 neutralizing antibody and detected the presence of p16ink, a 

senescence-associated cell cycle regulating protein 28 by Western blot (Fig. 5D) and found 

that p16ink levels increased dramatically over the course of the 6 days treatment, further 

confirming that loss of the tmTNF/TNFR2 signaling axis results in premature senescence of 

ECFCs.

To determine the role of tmTNF-TNFR2 signaling in our previously established 

inflammation-induced senescence model23 we treated ECFCs with soluble TNF or LPS for 6 

days to simulate a chronic inflammatory state and then determined senescence (Fig. 6A) and 

tmTNF surface expression (Fig. 6B). Interestingly, we found that senescence correlated with 

a downregulation of tmTNF. Next, we exposed ECFCs to chronic inflammation (soluble 

TNF or LPS) for 6 days with or without the TACE inhibitor TAPI and determined both 

tmTNF expression (Fig. 6C) and senescence (Fig. 6D). Importantly, we found that when 

tmTNF expression is maintained the development of inflammation-induced senescence is 

blocked even in chronic inflammatory conditions. An ELISA of the ECFC supernatant 

showed a dramatic increase in soluble TNF-α after 6 days of culture in chronic 

inflammatory conditions, further demonstrating that these conditions resulted in a loss of 

tmTNF (Fig. 6E). Moreover, ECFCs experience dramatic changes in TNF receptor 

expression over the course of chronic inflammation treatment, shifting from a predominantly 

TNFR2 profile to one strongly expressing TNFR1 (Fig. 6F). Together this data describes a 

situation in which chronic inflammation dramatically alters TNF signaling, resulting in a 

shift from tmTNF-TNFR2 signaling to soluble TNF-TNFR1 signaling and concomitant 

development of premature senescence.

Mechanisms of premature senescence

Next we addressed the mechanisms responsible for loss of tmTNF, and therefore premature 

ECFC senescence. Because of our previous observation that chronic inflammation-induced 

senescence required p38 MAP kinase activation23, we examined the effect of p38 inhibition 

on the expression of tmTNF and found that blocking p38 completely prevented the loss of 

tmTNF and subsequent development of premature senescence (Fig. 7A-B). We then 

determined surface expression of TACE by FACS over the course of 6 days treatment with 

soluble TNF (Fig. 7C) and found that TACE expression increased until almost 100% of 

ECFCs expressed TACE. However, upregulated surface expression of TACE was not p38-

dependent, as inclusion of a p38 inhibitor did not prevent this. We determined TACE activity 

and found that soluble TNF treatment led to increased activation of TACE, corresponding to 

the same timeframe as TACE translocation to the plasma membrane. TACE activity, in 

contrast to surface expression, was p38-dependent (Fig. 7D). Endothelial cells do not 

constitutively express TACE on their surface; instead, upon stimulus the chaperone protein 

iRhom2 enables its release from the ER and allows transport to the surface29. Therefore, we 
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examined the expression of iRhom2 upon addition of soluble TNF and found that expression 

increased dramatically over the course of the 6-day treatment (Fig. 7E-F). Increased iRhom2 

expression was not p38 dependent, further confirming that translocation of TACE to the cell 

surface is does not require p38. Taken together, our data indicate that under chronic 

inflammatory conditions ECFCs lose surface transmembrane TNF due to a combination of 

iRhom2-dependent TACE surface upregulation and p38-dependent increased TACE 

activation, resulting in the loss of a tmTNF/TNFR2-dependent proliferative signal and 

premature development of senescence.

DISCUSSION

Our data address for the first time that transmembrane TNF-α may have an important role in 

ECFC proliferative capacity. We show here that ECFCs express higher levels of tmTNF than 

mature endothelial cells. Moreover, the majority of tmTNF signal is found in populations of 

cord blood that have previously been shown to be enriched for ECFCs and circulating ECs, 

both of which exhibit high proliferative potential24. Selection of tmTNF+ MNCs from cord 

blood enriches for ECFCs as shown by an almost 300 fold increase in ECFC colonies per 

million MNCs over tmTNF− MNCs. Not only were more colonies obtained, but individual 

cells from these colonies exhibited a greater proportion of highly proliferative ECFCs than 

cells from the tmTNF− fraction. Finally, we found a positive correlation between the 

intensity of tmTNF expression and proliferative potential of ECFCs. This is in agreement 

with previous studies showing that umbilical vein endothelial cells (HUVECs) not only 

contain a higher percentage of ECFCs than other vessels, but also that the tmTNF expression 

in the HUVEC population is heterogenous and contains numerous highly positive cells, in 

contrast to mature endothelium which exhibits extremely low expression of tmTNF. 

Importantly, detection of tmTNFhigh cells may provide a novel technique for selecting highly 

proliferative ECFCs for both experimental procedures and potential cell therapies.

Our finding that tmTNF comprises both a marker for and a functional “maintenance” 

mechanism of ECFCs is surprising and on the first glance appears to be counter-intuitive. 

This is because the bulk of literature on TNF-α is on its soluble form, which is converted by 

cleavage from cell surface tmTNF and plays a major role in immunity and inflammation30. 

Comparably few publications analyze its precursor, tmTNF. Among those are publications 

demonstrating that in immune and vascular endothelial cells tmTNF binds preferentially to 

TNFR2, whereas soluble TNF-α binds to both TNFR1 and TNFR2. However, soluble TNF-

α binds weakly to TNFR2 and disassociates very quickly resulting in minimal receptor 

activation. Conversely, tmTNF binds strongly to TNFR2 and disassociates at a much slower 

rate, resulting in a strong and sustained signal transduction14. One of the functions of the 

tmTNF-TNFR2 axis in endothelial cells is to protect against atherosclerosis formation and to 

promote angiogenesis and repair as demonstrated by studies using uncleavable tmTNF 

transgenic and TNFR2 knockout mice18, 19, 31. Another proposed function of tmTNF is 

regulating responsiveness to VEGF for the induction of vascular permeability as previously 

shown by our group's and others’ TNF knockout and in vitro studies32, 33. Interestingly, in a 

previous study we observed a pronounced upregulation of tmTNF in angiogenic tumor blood 

vessels32, which is in line with studies demonstrating involvement of endothelial progenitors 

in tumor angiogenesis, a process also referred to as vasculogenesis34-36. In contrast to the 
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proposed maintenance function of tmTNF in ECFC in vascular repair and in angiogenesis, 

soluble TNF-α is predominately associated with inflammation, vascular dysfunction, and 

impaired repair26, and according to our group and others acts overwhelmingly through 

TNFR1 in endothelial cells13. Our data reported here show that removal of either tmTNF or 

TNFR2 causes ECFCs to lose their proliferative potential and develop premature 

senescence, which provides a mechanism for the observed role of TNFR2 in angiogenesis 

and vascular repair.

Our data demonstrate that NFκB is a key component of ECFC proliferation. This may be of 

relevance for anti-inflammatory therapies targeting NFκB as aggressive NFκB may reduce 

repair capacities of progenitor cells. Our findings are also in agreement with previous studies 

showing that NFκB is a regulator of cell proliferation and cell survival genes37-39 and indeed 

is upregulated or constitutively active in many cancers40. Importantly, NFκB has been 

identified previously to be downstream of TNFR241 and is even directly activated by 

TNFR242. Although NFκB is also downstream of TNFR1 it appears to be anti-apoptotic in 

this context, as it is activated by the TNF receptor-associated protein with death domain 

(TRADD)/TNF receptor-associated factor 2 (TRAF 2) signaling41, whereas the prototypical 

apoptotic caspase cascade associated with TNFR1 is downstream of TRADD/Fas-associated 

protein with death domain (FADD) activation43. Interestingly, a recent report demonstrates 

that NFκB signaling is involved in regulating the epigenetic machinery required for the 

nuclear reprogramming that induces pluripotency in iPSCs44, which may suggest a role for 

NFκB in the establishment of stemness.

While we show here that TNFR2 signaling is necessary to prevent ECFCs from becoming 

senescent, further studies into the mechanism behind TNFR2-dependent prevention of 

senescence are needed and are ongoing in our laboratory. There are several candidate 

regulators of senescence in endothelial cells and various progenitor cells that could be 

regulated by tmTNF/TNFR2 signaling, including survivin which modulates cell cycle and 

proliferation in CD34+ cord blood cells45 and SIRT146 which has been shown to prevent the 

development of senescence in endothelial cells. In this context, our previous work 

specifically analyzing tmTNF/TNFR2 regulated genes will be useful47. Importantly, we 

observed upregulation of several genes which promote angiogenesis such as connective 

tissue growth factor (Ctgf, or CCN2) and endothelial plasminogen activator inhibitor (Serpin 

E1), along with several cell signaling molecules which promote proliferation such as Akt1 

and p65 NFκB.

Endothelial injury in the absence of sufficient circulating progenitor cells may affect the 

progression of vascular diseases, as increases in senescent vascular wall cells may lead to the 

inability of the endothelium to maintain a continuous functional monolayer2, 22. ECFCs 

normally have low levels of senescence but undergo stress induced cellular senescence when 

exposed to chronic inflammatory conditions, a process which is independent of telomeric 

shortening-dependent replicative senescence23. We show here that this process is blocked by 

inhibition of tmTNF-α cleavage, and indeed the mechanism of chronic inflammation-

induced premature senescence involves an abrogation of tmTNF/TNFR2 signaling. This is 

accomplished by the activation of the tmTNF cleavage metalloprotease TACE via p38 MAP 

kinase as has been shown in other situations48, along with its concurrent export to the cell 
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surface by means of increased iRhom2 expression (see schematic, Figure 8). Further 

investigation of this pathway remains to be done, but may involve upregulation of iNOS, as 

this pathway has been linked to iRhom2 expression in hepatocytes29, 49.

Inflammation is involved at all stages of atherosclerosis, from the initial formation of the 

plaque to the time of plaque rupture resulting in acute coronary syndrome, which may 

explain the decreased numbers of ECFCs in diseased arteries50. Furthermore, because of the 

prevalence of conditions resulting in chronic inflammation such as diabetes, autoimmune 

diseases, and the clearly documented association between aging and chronic low level 

systemic inflammation,51 investigation into the mechanism of premature ECFC senescence 

is extremely relevant and may enable the development of novel therapies for treating 

vascular disease. Protecting expression of tmTNF-α in vivo could retain a highly 

proliferative ECFC population even during chronic inflammatory conditions, enabling 

continued vascular repair and more favorable prognosis in conditions such as diabetes or 

cardiovascular disease.
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Nonstandard Abbreviations and Acronyms

tmTNF transmembrane TNF

ECFCs endothelial colony forming cells

CPC circulating progenitor cells

HMVECs human microvascular endothelial cells

HCAECs human coronary arterial endothelial cells

HUVECs human umbilical vein endothelial cells
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Novelty and Significance

What Is Known?

• Expression of an uncleavable transmembrane TNF-α (tmTNF) in mice enhances 

angiogenesis.

• TNF receptor 1 (TNFR1) is anti-angiogenic, while the tmTNF-α-selective TNF 

receptor 2 (TNFR2) confers a survival signal, mediating angiogenic and blood 

vessel repair activities.

• Endothelial colony forming cells (ECFCs) become prematurely senescent upon 

exposure to chronic inflammatory conditions.

What New Information Does This Article Contribute?

• Unlike mature endothelial cells, ECFCs stably express tmTNF, which 

corresponds to increased proliferative capacity.

• Loss of tmTNF expression or tmTNF-TNFR2 signaling results in premature 

senescence of ECFCs.

• The mechanism of chronic inflammation-induced senescence in ECFCs is 

decreased tmTNF expression due to upregulation of surface expression and 

activity of the TNF-cleavage enzyme TACE.

ECFCs are believed to play an important role in the maintenance of healthy vasculature, 

and loss of ECFCs has been linked to development of atherosclerosis. Endothelial injury 

in the absence of sufficient ECFCs may affect the progression of vascular diseases, as 

increases in senescent vascular wall cells may lead to the inability of the endothelium to 

maintain a functional monolayer. Because of the prevalence of conditions resulting in 

chronic inflammation such as diabetes, autoimmune diseases, and the clearly documented 

association between aging and chronic low level systemic inflammation, investigation 

into the mechanism of premature ECFC senescence is extremely relevant and may enable 

the development of novel therapies for treating vascular disease. We show here that 

ECFCs stably express tmTNF; that tmTNF-TNFR2 signaling is essential for ECFC 

proliferation; and that chronic inflammation results in a loss of tmTNF and TNFR2, 

triggering premature senescence. This work shows a novel aspect of tmTNF biology, 

pinpoints a key signal for ECFC proliferation, and identifies the molecular mechanisms 

of inflammation-induced senescence. Protecting expression of tmTNF in patients could 

retain a highly proliferative ECFC population even during chronic inflammatory 

conditions, enabling continued vascular repair and more favorable prognosis in 

conditions such as diabetes or cardiovascular disease.
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Figure 1. tmTNF is expressed on a subset of EC
A-B. ECFC, HCAEC, or HMVEC (passage 3) were stained for tmTNF and analyzed by 

FACS, with percentage tmTNF+ determined based on IgG controls. C. tmTNF was detected 

in HMVEC and ECFC cell lysates by Western blot. D. Freshly isolated cord blood MNCs 

were stained for CD45, CD34, and tmTNF, and the percentage of CD45−/CD34+ cells that 

were positive for tmTNF was determined (blue dots in blue box ). E-F. Age-matched 

internal mammary arteries (healthy) were obtained from patients undergoing cardiac bypass 

surgery and tibial arteries (diseased) from patients with critical limb ischemia. Endothelial 

lining was gently removed from the vessel wall and co-stained for CD31 and tmTNF-α then 

analyzed by FACS. Data are representative of 3-4 independent experiments.
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Figure 2. tmTNF is associated with highly proliferative ECFC
A. Freshly isolated cord blood MNCs were sorted into tmTNF− or tmTNF+ fractions using 

MACS beads and plated with equal density on collagen-coated plates. ECFC colony 

formation was determined after 3 weeks. B. Freshly isolated cord blood MNCs were plated 

on collagen-coated plates and incubated with or without the addition of TACE. ECFC colony 

formation was determined after 3 weeks. C. Colonies of equal size were picked from tmTNF

− or tmTNF+ plates and reseeded onto 96-well plates with 1 cell/well. After 14 days the 

number of cells/well were counted to determine low (1-500), medium (500-2000), and high 

(2000+) proliferative potential. D. Colonies from the tmTNF+ fraction were FACS sorted 

into tmTNFlow, tmTNFmed, and tmTNFhigh fractions and replated onto 96-well plates with 1 

cell/well. E. After 14 days the number of cells/well were counted to determine low, medium, 

and high proliferative potential. Data are representative of 3-4 independent experiments.
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Figure 3. Loss of tmTNF/TNFR2 axis results in less ECFC proliferation
A. ECFCs were stained with antibodies for tmTNF and TNFR2 or IgG controls and 

expression analyzed by FACS. B. ECFCs were labeled with 5 μM CFSE for 10 minutes at 

RT and incubated for 4 days with NFκB inhibitor (100nM), TACE, or αTNFR2 (500ng/ml). 

The percentage of proliferating cells was determined by dilution of the CFSE signal. C. 
ECFCs were seeded into 12-well plates and cultured for 4 days with NFκB inhibitor 

(100nM), TACE, or αTNFR2 (500ng/ml), after which cell number was determined and the 

population doubling time (pdt) was calculated. ECFCs were transfected with siRNA targeted 
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to TNFR2 (D) or the p65 subunit of NFκB (E) and knockdown confirmed by Western blot. 

F. ECFCs were treated with TNFR2 siRNA, αTNFR2, or TACE and phosphorylation of 

TNFR2-specific Etk determined by Western blot. Percent proliferation (G) and pdt (H) were 

determined two days after transfection with p65 NFκB siRNA or TNFR2 siRNA. Data are 

representative of 3-4 independent experiments.

Green et al. Page 18

Circ Res. Author manuscript; available in PMC 2017 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Loss of tmTNF/TNFR2 axis diminished the angiogenic capacity of ECFCs
A-D. ECFCs were grown to confluency on collagen-coated CytoDex beads, embedded in 

fibrin gel and incubated in ECFC media +/− TACE (0.2 μg/ml) (B) or αTNFR2 (500ng/ml) 

for 5 days. Sprouts longer than the diameter of the beads (dashed line, A) were counted. 

Representative pictures of untreated (left panel) and TACE (right panel) sprouts are shown in 

A. C. Sprouting was determined using ECFCs transfected with TNFR2 siRNA. Data are 

representative of 3-4 independent experiments.
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Figure 5. Loss of tmTNF/TNFR2 axis induces premature senescence in ECFCs
A-D. ECFCs were treated with TACE (10 ng/ml) (A.) or αTNFR2 (500ng/ml) (B.) for 6 

days, then stained for SA-β-gal and senescent cells were quantified. C. Representative SA-β-

gal staining. D. To confirm senescence with another marker of senescence, p16ink (p16) 

ECFCs were treated with TACE for 6 days and p16 expression was determined by Western 

blot. Data are representative of 3-4 independent experiments.
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Figure 6. Inflammation-induced premature senescence correlates with loss of tmTNF
ECFCs were treated with soluble TNF (10 ng/ml) or LPS (100 ng/ml) for 6 days, then 

stained for SA-β-gal. (A.) or tmTNF expression was determined by FACS (B). Soluble TNF 

or LPS treatment was carried out in the presence of TAPI (10μM), then stained for SA-β-gal 

(A) or tmTNF (B.) and normalized to untreated controls. E. Soluble TNF or LPS treatment 

was carried out and soluble TNF levels in the supernatant determined by ELISA, with final 

amounts adjusted for the initial TNF treatment. F. ECFCs were treated with soluble TNF and 
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surface expression of TNFR1 and TNFR2 determined by FACS over the course of 6 days. 

Data are representative of 3-4 independent experiments.
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Figure 7. TACE expression is upregulated during chronic inflammatory conditions and required 
p38 activity and iRhom expression
ECFC were treated with soluble TNF (10 ng/ml) or LPS (100 ng/ml) for 6 days +/− p38 

inhibitor (10nM), then stained for tmTNF (A.) or SA-β-gal (B). C. ECFC were treated with 

soluble TNF (10 ng/ml) for 6 days +/− p38 inhibitor. Every 2 days cells were harvested and 

stained for surface TACE and analyzed by FACS. D. ECFC were treated with soluble TNF 

(10 ng/ml) for 6 days +/− p38 inhibitor and TACE activity was determined using a 

fluorescence-based kit (Anaspec). E.ECFC were treated with soluble TNF (10 ng/ml) for 6 

days +/− p38 inhibitor. Cell lysates were harvested every 2 days and probed for iRhom2 and 
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GAPDH expression. F. Densitometry analysis of iRhom2, normalized to GAPDH. Data are 

representative of 3-4 independent experiments.
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Figure 8. Schematic of tmTNF/TNFR2 regulation in ECFC
Under normal conditions tmTNF signaling through TNFR2 results in NFκB-dependent 

proliferation in the presence of growth factor receptor (GFRs) mediated signaling (green 

arrows). Upon cultivation in chronic inflammatory conditions, signaling through TNFR1 

results in an upregulation of iRhom2 and activation of p38 MAPK, which translocate TACE 

to the cell surface and activate it, respectively. TACE then cleaves tmTNF, resulting in a loss 

of tmTNF/TNFR2 signaling and subsequent development of senescence (red arrows).
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