88 research outputs found

    Dichotomal effect of space flight-associated microgravity on stress-activated protein kinases in innate immunity

    Get PDF
    Space flight strongly moderates human immunity but is in general well tolerated. Elucidation of the mechanisms by which zero gravity interacts with human immunity may provide clues for developing rational avenues to deal with exaggerated immune responses, e.g. as in autoimmune disease. Using two sounding rockets and one manned Soyuz launch, the influence of space flight on immunological signal transduction provoked by lipopolysaccharide (LPS) stimulation was investigated in freshly isolated peripheral blood monocytes and was compared to samples obtained from on-board centrifuge-loaded 1a'...g controls. The effect of microgravity on immunological signal transduction is highly specific, since LPS dependent Jun-N-terminal kinase activation is impaired in the 0a'...g condition, while the corresponding LPS dependent activation of p38 MAP kinase remains unaffected. Thus our results identify Jun-N-terminal kinase as a relevant target in immunity for microgravity and support using Jun-N-terminal kinase specific inhibitors for combating autoimmune disease

    Silencing Inhibits Cre-Mediated Recombination of the Z/AP and Z/EG Reporters in Adult Cells

    Get PDF
    BACKGROUND: The Cre-loxP system has been used to enable tissue specific activation, inactivation and mutation of many genes in vivo and has thereby greatly facilitated the genetic dissection of several cellular and developmental processes. In such studies, Cre-reporter strains, which carry a Cre-activated marker gene, are frequently utilized to validate the expression profile of Cre transgenes, to act as a surrogate marker for excision of a second allele, and to irreversibly label cells for lineage tracing experiments. PRINCIPAL FINDINGS: We have studied three commonly used Cre-reporter strains, Z/AP, Z/EG and R26R-EYFP and have demonstrated that although each reporter can be reliably activated by Cre during early development, exposure to Cre in adult hematopoietic cells results in a much lower frequency of marker-positive cells in the Z/AP or Z/EG strains than in the R26R-EYFP strain. In marker negative cells derived from the Z/AP and Z/EG strains, the transgenic promoter is methylated and Cre-mediated recombination of the locus is inhibited. CONCLUSIONS: These results show that the efficiency of Cre-mediated recombination is not only dependent on the genomic context of a given loxP-flanked sequence, but also on stochastic epigenetic mechanisms underlying transgene variegation. Furthermore, our data highlights the potential shortcomings of utilizing the Z/AP and Z/EG reporters as surrogate markers of excision or in lineage tracing experiments

    Wnt-reporter expression pattern in the mouse intestine during homeostasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The canonical Wnt signaling pathway is a known regulator of cell proliferation during development and maintenance of the intestinal epithelium. Perturbations in this pathway lead to aberrant epithelial proliferation and intestinal cancer. In the mature intestine, proliferation is confined to the relatively quiescent stem cells and the rapidly cycling transient-amplifying cells in the intestinal crypts. Although the Wnt signal is believed to regulate all proliferating intestinal cells, surprisingly, this has not been thoroughly demonstrated. This important determination has implications on intestinal function, especially during epithelial expansion and regeneration, and warrants an extensive characterization of Wnt-activated cells.</p> <p>Methods</p> <p>To identify intestinal epithelial cells that actively receive a Wnt signal, we analyzed intestinal Wnt-reporter expression patterns in two different mouse lines using immunohistochemistry, enzymatic activity, <it>in situ </it>hybridization and qRT-PCR, then corroborated results with reporter-independent analyses. Wnt-receiving cells were further characterized for co-expression of proliferation markers, putative stem cell markers and cellular differentiation markers using an immunohistochemical approach. Finally, to demonstrate that Wnt-reporter mice have utility in detecting perturbations in intestinal Wnt signaling, the reporter response to gamma-irradiation was examined.</p> <p>Results</p> <p>Wnt-activated cells were primarily restricted to the base of the small intestinal and colonic crypts, and were highest in numbers in the proximal small intestine, decreasing in frequency in a gradient toward the large intestine. Interestingly, the majority of the Wnt-reporter-expressing cells did not overlap with the transient-amplifying cell population. Further, while Wnt-activated cells expressed the putative stem cell marker Musashi-1, they did not co-express DCAMKL-1 or cell differentiation markers. Finally, gamma-irradiation stimulated an increase in Wnt-activated intestinal crypt cells.</p> <p>Conclusion</p> <p>We show, for the first time, detailed characterization of the intestine from Wnt-reporter mice. Further, our data show that the majority of Wnt-receiving cells reside in the stem cell niche of the crypt base and do not extend into the proliferative transient-amplifying cell population. We also show that the Wnt-reporter mice can be used to detect changes in intestinal epithelial Wnt signaling upon physiologic injury. Our findings have an important impact on understanding the regulation of the intestinal stem cell hierarchy during homeostasis and in disease states.</p

    Epithelial argininosuccinate synthetase is dispensable for intestinal regeneration and tumorigenesis

    Get PDF
    The epithelial signaling pathways involved in damage and regeneration, and neoplastic transformation are known to be similar. We noted upregulation of argininosuccinate synthetase (ASS1) in hyperproliferative intestinal epithelium. Since ASS1 leads to de novo synthesis of arginine, an important amino acid for the growth of intestinal epithelial cells, its upregulation can contribute to epithelial proliferation necessary to be sustained during oncogenic transformation and regeneration. Here we investigated the function of ASS1 in the gut epithelium during tissue regeneration and tumorigenesis, using intestinal epithelial conditional Ass1 knockout mice and organoids, and tissue specimens from colorectal cancer patients. We demonstrate that ASS1 is strongly expressed in the regenerating and Apc-mutated intestinal epithelium. Furthermore, we observe an arrest in amino acid flux of the urea cycle, which leads to an accumulation of intracellular arginine. However, loss of epithelial Ass1 does not lead to a reduction in proliferation or increase in apoptosis in vivo, also in mice fed an arginine-free diet. Epithelial loss of Ass1 seems to be compensated by altered arginine metabolism in other cell types and the liver.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    Colorectal Cancer Stem Cells Are Enriched in Xenogeneic Tumors Following Chemotherapy

    Get PDF
    Patients generally die of cancer after the failure of current therapies to eliminate residual disease. A subpopulation of tumor cells, termed cancer stem cells (CSC), appears uniquely able to fuel the growth of phenotypically and histologically diverse tumors. It has been proposed, therefore, that failure to effectively treat cancer may in part be due to preferential resistance of these CSC to chemotherapeutic agents. The subpopulation of human colorectal tumor cells with an ESA(+)CD44(+) phenotype are uniquely responsible for tumorigenesis and have the capacity to generate heterogeneous tumors in a xenograft setting (i.e. CoCSC). We hypothesized that if non-tumorigenic cells are more susceptible to chemotherapeutic agents, then residual tumors might be expected to contain a higher frequency of CoCSC.Xenogeneic tumors initiated with CoCSC were allowed to reach approximately 400 mm(3), at which point mice were randomized and chemotherapeutic regimens involving cyclophosphamide or Irinotecan were initiated. Data from individual tumor phenotypic analysis and serial transplants performed in limiting dilution show that residual tumors are enriched for cells with the CoCSC phenotype and have increased tumorigenic cell frequency. Moreover, the inherent ability of residual CoCSC to generate tumors appears preserved. Aldehyde dehydrogenase 1 gene expression and enzymatic activity are elevated in CoCSC and using an in vitro culture system that maintains CoCSC as demonstrated by serial transplants and lentiviral marking of single cell-derived clones, we further show that ALDH1 enzymatic activity is a major mediator of resistance to cyclophosphamide: a classical chemotherapeutic agent.CoCSC are enriched in colon tumors following chemotherapy and remain capable of rapidly regenerating tumors from which they originated. By focusing on the biology of CoCSC, major resistance mechanisms to specific chemotherapeutic agents can be attributed to specific genes, thereby suggesting avenues for improving cancer therapy

    Normal stem cells in cancer prone epithelial tissues

    Get PDF
    The concept of a cancer stem cell is not a new one, being first suggested over 100 years ago. Over recent years the concept has enjoyed renewed enthusiasm, partly because of our growing understanding of the nature of somatic stem cells, but also because of a growing realisation that the development of strategies that target cancer stem cells may offer considerable advantages over conventional approaches. However, despite this renewed enthusiasm the existence of cancer stem cells remains controversial in many tumour types and any potential relationship to the normal stem cell pool remains poorly defined. This review summarises key elements of our understanding of the normal stem cell populations within animal models of the predominant cancer prone epithelial tissues, and further investigates the potential links between these populations and putative cancer stem cells

    Age-Dependent TLR3 Expression of the Intestinal Epithelium Contributes to Rotavirus Susceptibility

    Get PDF
    Rotavirus is a major cause of diarrhea worldwide and exhibits a pronounced small intestinal epithelial cell (IEC) tropism. Both human infants and neonatal mice are highly susceptible, whereas adult individuals remain asymptomatic and shed only low numbers of viral particles. Here we investigated age-dependent mechanisms of the intestinal epithelial innate immune response to rotavirus infection in an oral mouse infection model. Expression of the innate immune receptor for viral dsRNA, Toll-like receptor (Tlr) 3 was low in the epithelium of suckling mice but strongly increased during the postnatal period inversely correlating with rotavirus susceptibility, viral shedding and histological damage. Adult mice deficient in Tlr3 (Tlr3βˆ’/βˆ’) or the adaptor molecule Trif (TrifLps2/Lps2) exerted significantly higher viral shedding and decreased epithelial expression of proinflammatory and antiviral genes as compared to wild-type animals. In contrast, neonatal mice deficient in Tlr3 or Trif did not display impaired cell stimulation or enhanced rotavirus susceptibility. Using chimeric mice, a major contribution of the non-hematopoietic cell compartment in the Trif-mediated antiviral host response was detected in adult animals. Finally, a significant age-dependent increase of TLR3 expression was also detected in human small intestinal biopsies. Thus, upregulation of epithelial TLR3 expression during infancy might contribute to the age-dependent susceptibility to rotavirus infection
    • …
    corecore