15 research outputs found

    Revisiting “Success” and “Failure” of Marine Protected Areas: A Conservation Scientist Perspective

    Get PDF
    Marine protected areas (MPAs) form the cornerstone of marine conservation. Identifying which factors contribute to their success or failure is crucial considering the international conservation targets for 2020 and the limited funds generally available for marine conservation. We identified common factors of success and/or failure of MPA effectiveness using peer-reviewed publications and first-hand expert knowledge for 27 case studies around the world. We found that stakeholder engagement was considered to be the most important factor affecting MPA success, and equally, its absence, was the most important factor influencing failure. Conversely, while some factors were identified as critical for success, their absence was not considered a driver of failure, and vice versa. This mismatch provided the impetus for considering these factors more critically. Bearing in mind that most MPAs have multiple objectives, including non-biological, this highlights the need for the development and adoption of standardized effectiveness metrics, besides biological considerations, to measure factors contributing to the success or failure of MPAs to reach their objectives. Considering our conclusions, we suggest the development of specific protocols for the assessment of stakeholder engagement, the role of leadership, the capacity of enforcement and compliance with MPAs objectives. Moreover, factors defining the success and failure of MPAs should be assessed not only by technical experts and the relevant authorities, but also by other stakeholder groups whose compliance is critical for the successful functioning of an MPA. These factors should be considered along with appropriate ecological, social, and economic data and then incorporated into adaptive management to improve MPA effectiveness

    Controlling range expansion in habitat networks by adaptively targeting source populations

    No full text
    Controlling the spread of invasive species, pests, and pathogens is often logistically limited to interventions that target specific locations at specific periods. However, in complex, highly connected systems, such as marine environments connected by ocean currents, populations spread dynamically in both space and time via transient connectivity links. This results in nondeterministic future distributions of species in which local populations emerge dynamically and concurrently over a large area. The challenge, therefore, is to choose intervention locations that will maximize the effectiveness of the control efforts. We propose a novel method to manage dynamic species invasions and outbreaks that identifies the intervention locations most likely to curtail population expansion by selectively targeting local populations most likely to expand their future range. Critically, at any point during the development of the invasion or outbreak, the method identifies the local intervention that maximizes the long-term benefit across the ecosystem by restricting species' potential to spread. In so doing, the method adaptively selects the intervention targets under dynamically changing circumstances. To illustrate the effectiveness of the method we applied it to controlling the spread of crown-of-thorns starfish (Acanthaster sp.) outbreaks across Australia's Great Barrier Reef. Application of our method resulted in an 18-fold relative improvement in management outcomes compared with a random targeting of reefs in putative starfish control scenarios. Although we focused on applying the method to reducing the spread of an unwanted species, it can also be used to facilitate the spread of desirable species through connectivity networks. For example, the method could be used to select those fragments of habitat most likely to rebuild a population if they were sufficiently well protected

    Integrating regional conservation priorities for multiple objectives into national policy

    Get PDF
    Multinational conservation initiatives that prioritize investment across a region invariably navigate trade-offs among multiple objectives. It seems logical to focus where several objectives can be achieved efficiently, but such multi-objective hotspots may be ecologically inappropriate, or politically inequitable. Here we devise a framework to facilitate a regionally cohesive set of marine-protected areas driven by national preferences and supported by quantitative conservation prioritization analyses, and illustrate it using the Coral Triangle Initiative. We identify areas important for achieving six objectives to address ecosystem representation, threatened fauna, connectivity and climate change. We expose trade-offs between areas that contribute substantially to several objectives and those meeting one or two objectives extremely well. Hence there are two strategies to guide countries choosing to implement regional goals nationally: multi-objective hotspots and complementary sets of single-objective priorities. This novel framework is applicable to any multilateral or global initiative seeking to apply quantitative information in decision making
    corecore