303 research outputs found

    Spectral diffusion of single semiconductor nanocrystals: the influence of the dielectric environment

    Full text link
    We have explored the influence of different matrices on the emission line shape of individual homogeneously coated CdSe/CdS/ZnS nanocrystals. The results obtained corroborate previous observations of a correlation between blinking events and spectral diffusion but in addition we have found that the extent of spectral diffusion is almost independent of the dielectric environment of the NC. Additionally, we report the observation of a correlation between the line width and emission energy which is not expected to occur in the spherical - symmetric NCs employed in this work. The implications of these results are discussed.Comment: 3 pages, 3 figure

    Scanning nano-spin ensemble microscope for nanoscale magnetic and thermal imaging

    Full text link
    Quantum sensors based on solid-state spins provide tremendous opportunities in a wide range of fields from basic physics and chemistry to biomedical imaging. However, integrating them into a scanning probe microscope to enable practical, nanoscale quantum imaging is a highly challenging task. Recently, the use of single spins in diamond in conjunction with atomic force microscopy techniques has allowed significant progress towards this goal, but generalisation of this approach has so far been impeded by long acquisition times or by the absence of simultaneous topographic information. Here we report on a scanning quantum probe microscope which solves both issues, by employing a nano-spin ensemble hosted in a nanodiamond. This approach provides up to an order of magnitude gain in acquisition time, whilst preserving sub-100 nm spatial resolution both for the quantum sensor and topographic images. We demonstrate two applications of this microscope. We first image nanoscale clusters of maghemite particles through both spin resonance spectroscopy and spin relaxometry, under ambient conditions. Our images reveal fast magnetic field fluctuations in addition to a static component, indicating the presence of both superparamagnetic and ferromagnetic particles. We next demonstrate a new imaging modality where the nano-spin ensemble is used as a thermometer. We use this technique to map the photo-induced heating generated by laser irradiation of a single gold nanoparticle in a fluid environment. This work paves the way towards new applications of quantum probe microscopy such as thermal/magnetic imaging of operating microelectronic devices and magnetic detection of ion channels in cell membranes.Comment: 22 pages including Supporting Information. Changes to v1: affiliations and funding information updated, plus minor revisions to the main tex

    Transparent metal electrodes from ordered nanosphere arrays

    Get PDF
    We show that perforated metal electrode arrays, fabricated using nanosphere lithography, provide a viable alternative to conductive metal oxides as transparent electrode materials. The inter-aperture spacing is tuned by varying etching times in an oxygen plasma, and the effect of inter-aperture “wire” thickness on the optical and electronic properties of perforated silver films is shown. Optical transmission is limited by reflection and surface plasmons, and for these results do not exceed 73%. Electrical sheet resistance is shown to be as low as 3 Ω ◻−1 for thermally evaporated silver films. The performance of organic photovoltaic devices comprised of a P3HT:PCBM bulk heterojunction deposited onto perforated metal arrays is shown to be limited by optical transmission, and a simple model is presented to overcome these limitations

    Ultrafast imaging of terahertz electric waveforms using quantum dots

    Get PDF
    Microscopic electric fields govern the majority of elementary excitations in condensed matter and drive electronics at frequencies approaching the Terahertz (THz) regime. However, only few imaging schemes are able to resolve sub-wavelength fields in the THz range, such as scanning-probe techniques, electro-optic sampling, and ultrafast electron microscopy. Still, intrinsic constraints on sample geometry, acquisition speed and field strength limit their applicability. Here, we harness the quantum-confined Stark-effect to encode ultrafast electric near-fields into colloidal quantum dot luminescence. Our approach, termed Quantum-probe Field Microscopy (QFIM), combines far-field imaging of visible photons with phase-resolved sampling of electric waveforms. By capturing ultrafast movies, we spatio-temporally resolve a Terahertz resonance inside a bowtie antenna and unveil the propagation of a Terahertz waveguide excitation deeply in the sub-wavelength regime. The demonstrated QFIM approach is compatible with strong-field excitation and sub-micrometer resolution—introducing a direct route towards ultrafast field imaging of complex nanodevices in-operando

    Memory in quantum dot blinking

    Full text link
    The photoluminescence intermittency (blinking) of quantum dots is interesting because it is an easily-measured quantum process whose transition statistics cannot be explained by Fermi's Golden Rule. Commonly, the transition statistics are power-law distributed, implying that quantum dots possess at least trivial memories. By investigating the temporal correlations in the blinking data, we demonstrate with high statistical confidence that quantum dot blinking data has non-trivial memory, which we define to be statistical complexity greater than one. We show that this memory cannot be discovered using the transition distribution. We show by simulation that this memory does not arise from standard data manipulations. Finally, we conclude that at least three physical mechanisms can explain the measured non-trivial memory: 1) Storage of state information in the chemical structure of a quantum dot; 2) The existence of more than two intensity levels in a quantum dot; and 3) The overlap in the intensity distributions of the quantum dot states, which arises from fundamental photon statistics.Comment: Added supplementary quantum dot plots in source director

    Charge hopping revealed by jitter correlations in the photoluminescence spectra of single CdSe nanocrystals

    Get PDF
    Spectral fluctuations observed in single CdSe/ZnS nanocrystals at 5 K are found to be entirely the result of discrete charge hops in the local environment of the nanocrystal, which occur at a rate comparable to the acquisition time of a single spectrum. We show that intervals between discrete spectral hops introduce a correlation between the successive measurements of the emission wavelength of single CdSe nanocrystals. This correlation can be recovered even in the presence of noise, but is shown to be sensitive to the experimental acquisition time, in good agreement with theory. However, we only find correlations for the smaller of the two nanocrystal sizes studied and discuss this in terms of size-dependent time scales correlated with the amount of excess energy dissipated in the nanocrystal due to hot-carrier relaxation. © 2010 The American Physical Societ
    corecore